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1. Introduction  

 Microfluidics is the study of systems 

with fluids inside channels of microscopic 

widths. Microfluidic devices have been used to 

detect cancers, analyze DNA, and study 

bacteria, among other applications [1]. 

 The objective of this experiment is to 

validate theoretical microfluidic flow models 

by measuring bead velocities in channels of 

varying geometry. An important equation for 

incompressible flow of a streamline is 

Bernoulli’s Equation, shown below, for density 

𝜌, speed 𝑣, gravity 𝑔, height 𝑧, and pressure 𝑃.  
1

2
 𝜌𝑣2 + 𝜌𝑔𝑧 + 𝑃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (1) 

 Note that Equation (1) does not apply to 

viscous and turbulent flow. However, other 

methods to model these flows are complex, so 

an ideal laminar flow approximation is used. At 

steady flow, the volume of fluid past a cross-

sectional area is assumed to be constant with 

respect to time. From conservation of mass, 

Equation (2) applies, where 𝐴𝑖 , 𝑣𝑖 refers to the 

cross-sectional area and speed of fluid at point 

𝑖, respectively. 

∫ 𝑣1𝑑𝐴1 =  ∫ 𝑣2𝑑𝐴2 (2) 

If the flow is constant in any cross-section, 

it reduces to the continuity equation 𝑣1𝐴1 =
𝑣2𝐴2. Furthermore, for volume flow rate 𝑄, 

pressure difference ∆𝑃, dynamic viscosity 

coefficient 𝜇, and length of pipe section 𝐿, 

Hagen-Poiseuille’s law [2] gives Equation (3), 

for an incompressible, Newtonian fluid in 

laminar flow through a cylindrical pipe. 

𝑄 =
𝑆2

8𝜋𝜇𝐿
(∆𝑃 + 𝜌𝑔∆𝑧) (3) 

In this report, I will use the above equations 

to examine the flow of fluid through four 

different channels (straight, bent, gradual 

change, sharp change), and discuss their 

behaviors in each one.   

2. Experimental Procedures 

The experiment used a microscope to 

observe fluid flow through a 

polydimethylsiloxane (PDMS) microfluidic 

chip. The chip was connected with tubing to a 

syringe, mounted on a movable stand to control 

the driving pressure through a hydrostatic head 

(syringe height). A reservoir collected the waste 

fluid. The working fluid was a suspension of 

fluorescent beads in ethanol. Flow was induced 

by gravity, and bead motion was captured with 

the microscope's camera in fluorescence (TX2 

filter) mode. Flow velocity (𝑣) was determined 

by measuring the streak length (𝑑) of beads 

during a known camera exposure time (𝑡) using 

the relation 𝑣 =
𝑑

𝑡
. A detailed step-by-step 

procedure is provided in the lab manual [2]. 

To convert from pixels to physical 

units, the scale bar present in each image was 

used. Using MS paint, 44.913 µm 

corresponded to 288 pixels, giving a 

conversion factor of 0.1559 µm/pixel. All 

distance measurements in pixels were 

multiplied by this factor. The software used to 

get pixel length had an accuracy of 1 pixel.  

3. Error Analysis 

I first achieved a quantifiable reading 

error, as many of the streaks were blurry and 

getting the width of each wasn’t the same each 

time. A standard deviation of the measurement 

of one point was taken, to be around 1.817 

pixels, higher than 1 pixel, which I took as my 

reading error. 

Each picture had an exposure time 

associated with it, where the error was taken to 

be the precision of the measurement to the least 

significant digit (e.g. 0.17392 seconds would 

have  0.00001s). Note that because the time 

measurements were extremely precise, the 

errors for velocity were dominated by streak 

measurements. 

For the conversion of each pixel 

measurement to metres, there was error 

associated with the scale measure, ∆𝐿, being 
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0.001 µm from the image accuracy. There 
was also ∆𝑝𝑥 =  1.817 𝑝𝑖𝑥𝑒𝑙𝑠, being my 
reading error. Therefore, the propagated 
error ∆𝑃 for each pixel conversion 𝑃 for 𝐿 =
44.913 µm, 𝑝𝑥 =  288 𝑝𝑖𝑥𝑒𝑙𝑠 is given in 

Equation (4), and calculated to be ∆𝑃 =
0.001 µm with the stated values. 

∆𝑃 = 𝑃 ∗ √(
∆𝐿

𝐿
)

2

+ (
∆𝑝𝑥

𝑝𝑥
)

2

 (4) 

When converting from pixels to meters, 

𝑥,  if 𝑥 = 𝑃 ∗ 𝑑, for P the conversion factor and 

d the length in pixels, the propagation ∆𝑥 is 

given in Equation (5). 

∆𝑥 = 𝑥 ∗ √(
∆𝑃

𝑃
)

2

+ (
∆𝑑

𝑑
)

2

 (5) 

For example, if 𝑑 = 15 𝑝𝑖𝑥𝑒𝑙𝑠, 𝑥 =
2.34 µm, 𝑃 is the conversion factor and  ∆𝑃 =
0.001 µm/px , 

∆𝑥 = 2.339µm ∗ √(
0.001

44.913
288

)

2

+ (
1.817

15
)

2

= 0.284µm 

To calculate the velocity error, I first 

took the kinematics equation 𝑣 =
𝑥

𝑡
, for 𝑣 

velocity, 𝑥 distance and 𝑡 time.  

Differentiating 𝑣 with respect to 𝑥 and 

𝑡, I achieved the expressions in Equation (6). 
𝜕𝑣

𝜕𝑥
=

1

𝑡
,
𝜕𝑣

𝜕𝑡
=

−𝑥

𝑡2
 (6) 

Using the calculus-derived error 

propagation [3], I rearranged my terms, going 

through Equations (7-9) to arrive at Equation 

(10). 

(∆𝑣)2 = (
𝜕𝑣

𝜕𝑥
∆𝑥)

2

+ (
𝜕𝑣

𝜕𝑡
∆𝑡)

2

(7) 

(
∆𝑣

𝑣
)

2

=
1

𝑣2
((

1

𝑡
∆𝑥)

2

+ (
−𝑥

𝑡2
∆𝑡)

2

) (8) 

(
∆𝑣

𝑣
)

2

=  (
∆𝑥

𝑥
)

2

+ (
∆𝑡

𝑡
)

2

(9) 

∆𝑣 = 𝑣√(
∆𝑥

𝑥
)

2

+ (
∆𝑡

𝑡
)

2

(10) 

Equation (10) gives the final velocity 

error propagation. A sample calculation with 

this would be to take an exposure time 𝑡 =
0.134𝑠, ∆𝑡 = 1𝑚𝑠, a streak length of 𝑥 =
2.339 µm, ∆𝑥 = 0.284µm, and a calculated 

𝑣 = 0.017 𝑚/𝑠, from Equation (5), to yield 

∆𝑣 = (0.017
𝑚

𝑠
)√(

0.284

2.339
)

2

+ (
1 ∗ 10−3𝑠

0.134𝑠
)

2

 

∆𝑣 ≈ 0.002 𝑚/𝑠 

Some non-quantifiable errors that 

appeared in the chip were air bubbles. An 

example of this is most prominent in the image 

for sharp width change, in Figure 5. These 

caused blockages, increasing local flow 

velocity and pressure drops, and potentially 

introducing unsteady, turbulent-like flow 

patterns. 

Note that the visual inspection of the 

channels showed minor wall imperfections, 

with roughness estimated from pixel variation 

to be on the order of 1.092  0.001  µm. This 

was achieved through taking the standard 

deviation of wall measurements across images 

and using error propagation stated in Section 3. 

These imperfections enhance viscous friction 

near the walls, distorting the velocity profile 

from its ideal parabolic shape. This increased 

wall shear stress leads to a higher pressure drop 

for a given flow rate and can reduce the mean 

streamwise velocity. While the impact of these 

imperfections is likely small compared to other 

errors like air bubbles, they contribute to a 

systematic deviation from theoretical 

predictions. 

4. Results and Discussion  

In the following section, I will describe 

the behaviour of the flow through each channel 

type, and how they follow the equations 

outlined in the introduction of the report.  

4.1. Flow Through a Straight 

Channel 

The flow in the straight channel was 

observed, with the image shown in Figure 1.  
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Figure 1 Straight channel image, with scale in the 

bottom left corner 

As seen by the apparently straight flow 

lines (red streaks), the flow seems to be laminar 

as no streaks cross each other, and all run 

parallel to the channel walls.  

For pressure-driven laminar flow between 

two parallel plates, the velocity profile is 

parabolic, following the no-slip condition. 

Therefore, the maximum velocity is expected at 

the channel centerline. Conversely, the 

maximum velocity gradient (shear rate) occurs 

at the walls, where the velocity changes from 

zero to the free-stream value. I observe this 

trend in Figure 1, where most streaks are 

shorter near the walls and longer at the center.  

 The velocity profile of the channel is 

shown in Figure 2, compared with a parabolic 

fit in green.  

 
Figure 2 Velocity profile of the straight channel, 

with error bars (too small to be seen) and a 

parabolic fit in green. The equation is 

v=((1.9820.211)* 108 ) 𝑥2+((1.51117.698)* 
104 )x+(4.126  56.67). The R-squared value is 

around 0.897. 

The measured profile mostly follows a 

parabolic trend; however, it has high error 

values for its parameters, meaning it still is not 

ideal. As well, while the R-squared value is 

high, it’s not very close to 1 (closer to 0.9). 

This is likely due to the channel imperfections 

and the difficulty in measuring streaks very 

close to the center where there is a lot of blur. 

Based on the principles behind Bernoulli’s 

equation (Equation (1)), the mean velocity can 

be manipulated by changing the driving 

pressure, which is a function of the syringe 

height (ρgΔz). The experiment was idealized to 

the model in Figure 3 in the lab manual [2], to 

derive the relationship between changing 

channel heights and velocity. For 𝑄 the 

volumetric flow rate, the velocity 𝑈 past a unit 

area 𝑆 would be given by Equation (11). 

𝑈 = 𝑆𝑄 (11) 

From equation 4, 𝑄 =
𝑆2

8𝜋𝜇𝐿
(∆𝑃 +

𝜌𝑔∆𝑧). Between section 1 and 2, and 3 and 4, 

there is a height difference, therefore both have 

the form  𝑄 =
𝑆𝑖

2

8𝜋𝜇𝐿𝑖
(𝑃𝑖 − 𝑃𝑖+1 + 𝜌𝑔(𝑧𝑖 −

𝑧𝑖+1)), for i = 1 and 2. For sections 2-3, 3-4, 4-

5, 5-6, they are all at the same height, meaning 

the 𝜌𝑔∆𝑧 term cancels, leaving Q=
𝑆𝑖

2

8𝜋𝜇𝐿𝑖
(𝑃𝑖 −

𝑃𝑖+1 + 𝜌𝑔(𝑧𝑖 − 𝑧𝑖+1)), for i=2,3,4,5. If we 

were to sum the above, we would get an 

expression like Equation (12), for 𝑅𝑗 =
8𝜋𝜇𝐿𝑗

𝑆𝑗
2 .  

∑ ∆𝑃𝑗 + 𝜌𝑔∆𝑧𝑗
𝑖

= 𝑄 ∑ 𝑅𝑗
𝑖

 (12) 

Note that ∑ ∆𝑃𝑗𝑖  simply equals 𝑃1 − 𝑃6, 

through terms cancelling out, and ∑ 𝜌𝑔∆𝑧𝑗𝑖  

equals ρg(z1 − 𝑧3). Thus, we arrive at 

Equation (13).  

𝑃1 − 𝑃6 +  ρg(z1 − 𝑧3) = 𝑄 ∑ 𝑅𝑗
𝑖

 (13) 

If the syringe free surface pressure and exit 

are both atmospheric, 𝑃1 − 𝑃6 = 0, and we get 

Equation (14). 

ρg(z1 − 𝑧3) = 𝑄 ∑ 𝑅𝑗
𝑖

 (14) 
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With Equation (11), 𝑈3 = 𝑆3𝑄, so we get 

Equation (15), which can be arranged to 

Equation (16). 

ρg(z1 − 𝑧3) =
𝑈3

𝑆3
∑ 𝑅𝑗

𝑖
 (15) 

U3 =
ρg(z1 − 𝑧3)

𝑆3 ∑ 𝑅𝑗𝑖
 (16) 

Because all ρ, g, 𝑆3, 𝑅𝑗 are constants with 

known values, we achieve the general formula, 

Equation (17), where if 𝑧3 is to be taken as a 

reference height located at 𝑧 = 0, it simplifies 

to Equation (18).  
U3 = 𝑘(𝑧1 − 𝑧3) = 𝑘∆𝑧 (17) 

U3 = 𝑘𝑧1 (18) 

Thus, velocity scales linearly with height.  

The syringe was changed to four different 

heights, and the velocity in the channel was 

measured at the same point at each height. The 

result of this plotting is shown in Figure 3.  

 
Figure 3 : Changes in velocity within the straight 

channel at four different heights. The points show a 

linear trend, approximately following v=(0.037  

0.003)x + (0.4270.008). The R-squared value was 

around 0.982. 

From Figure 3, we see similarities 

between the linear equation in Equation (18) 

and the linear trend outlined by the blue line of 

best fit. The R-squared value is high, close to 1, 

and the errors are within 1% of values, showing 

a close relationship between the linear fit and 

observed data, greatly affirming Equation (18) 

for change in velocity given different heights. 

However, the fit is not perfect, likely attributed 

to errors in height measurement, chip wall 

imperfections, and reading error. 

4.2. Flow Through a Bend 

As flow in the chip went through bends, 

streamlines would crowd together near the 

outer concave wall, narrowing the stream tube 

and increasing local velocity, while they 

expanded near the inner convex corner, 

contributing to the flow separation. The images 

for the bent regions are shown in Figure 4.  

 
Figure 4 : Images of two bent regions, the right 
being the smooth (domed) bend and the left the 

sharp (L-shaped) bend. Most particles are 
streamlined closer to the middle, and circular 

eddies form around the bend 

Note that in the sharp bend (L-shaped), 

a prominent flow separation bubble is located 

at the inner (convex) corner, creating a 

recirculating eddy. The smooth bend showed a 

similar, but less prominent separation near the 

bottom of the U, where most of the streamlines 

appeared to still be laminar.  

This difference arises because the 

gradual curvature of the smooth bend allows 

the flow to adhere to the wall, while the abrupt 

turn in the sharp bend creates an adverse 

pressure gradient that causes separation. 

Although the pathlines are curved, they are 

smooth and do not exhibit the random, chaotic 

crossing or mixing characteristic of turbulent 

flow. The observed eddies in the sharp bend are 

steady, laminar separation bubbles, not 

turbulent vortices. 

The velocities before and after the bend 

in each type of bend are recorded in Table 1.  
Table 1: Velocities recorded before and after bends 

for both sharp and smooth bends. 

Type of 

Bend 

Velocity before 

bend (mm/s) 

Velocity after 

bend (mm/s) 
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Sharp (L-

shape) 
0.726  0.012 0.775  0.012 

0.292  0.011 0.413  0.011 

Smooth 

(domed) 
0.212  0.011 0.247  0.011 

0.159  0.006 0.198 0.006 

For flow through a bend, considering the 

channel width does not change before and after 

bends, I originally expected the velocity to 

decrease because of eddies forming near the 

curve (where flow would not be streamline). 

However, the data in Table 1 shows slight 

increases in velocities before and after bends.  

I hypothesize this is due to more 

complicated theory, such as how flow through 

a curved pipe develops secondary vortices and 

the r.m.s. (fluctuation) of velocities increase 

due to mean strain from curvature [4]. 

Therefore, the bend introduces a centrifugal 

force that causes fluid near the outer wall to 

speed up and a return flow near the inner wall 

(the ‘Dean’ vortex pair). The redistribution 

leads to a higher axial velocity along the 

centreline (or shifted centre of max velocity) 

than upstream. 

4.3. Effects of Varying Channel Widths 

  Looking at the channels with width 

change, the theoretically expected centerline 

flow velocity ratio was calculated with 

Equation (19), derived from Equation (3) 

assuming the height did not change.  

𝑄 =
𝑆2

8𝜋𝜇𝐿
(∆𝑃) (19) 

Using the fact that the average flow 

velocity (𝑈𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ) is half that of the centerline 

velocity (𝑈𝑚𝑎𝑥) [2], and conservation of mass, 

where for volumetric flow rate 𝑄 , 𝑄𝑖𝑛 = 𝑄𝑜𝑢𝑡, 

we arrive at Equation (20), a restating of 

Equation (2).  
𝑆1𝑈𝑎𝑣𝑔,1 = 𝑆2𝑈𝑎𝑣𝑔,2 (20) 

Relating Equation (20) with 
1

2
𝑈𝑚𝑎𝑥 =

𝑈𝑎𝑣𝑒𝑟𝑎𝑔𝑒we get the ratio in Equation (21), for 

centerline velocities 𝑈𝑚𝑎𝑥,1, 𝑈𝑚𝑎𝑥,2.  
𝑆1

𝑆2
=

𝑈𝑚𝑎𝑥,2

𝑈𝑚𝑎𝑥,1
 (21) 

Assuming the channels are rectangular, the 

area ratio would reduce to Equation (22).  

𝑆1

𝑆2
=

𝑙 ∗  𝑤1
 

𝑙 ∗  𝑤2
 =

𝑤1
 

𝑤2
 =

𝑈𝑚𝑎𝑥,2

𝑈𝑚𝑎𝑥,1

(22) 

The widths of each channel (gradual and 

sharp) are recorded in Table 2, for both before 

and after, noting the ratio change 
𝑆1

𝑆2
.  

Table 2 Widths before and after for gradual and 

sharp channels, along with the ratio of width before 

to width after. 

Type of 

channel 

Width 

before (µm) 

Width 

after (µm) 

Ratio 

(before/after) 

Gradual 69.017 

0.686 

130.206  

1.148 

0.530  0.006 

Sharp 72.314  

0.709 

200.254  

1.710 

0.361  0.010 

Note that the error for each ratio was 

calculated as in Equation (23), for 𝑗1, 𝑗2 

quanties before and after, ∆ 𝑗  the error in each 

quantity, 𝑅 the ratio and ∆𝑅 the error in the 

ratio. In this case, 𝑗1, 𝑗2 are the widths, ∆𝑗1, ∆𝑗2 

the errors in widths, and R the width ratio. 

∆𝑅 = 𝑅√
∆𝑗1

𝑗1
+

∆𝑗2

𝑗2
 (23) 

 Similarly, the velocities before and after 

each channel change were recorded in Table 3, 

alongside the ratio 
𝑈𝑚𝑎𝑥,2

𝑈𝑚𝑎𝑥,1
.  

Table 3: Velocities before and after for gradual and 

sharp channels, along with the ratio of velocity 

after to velocity before. 

Type of 

channel 

Velocity 

before 

(mm/s) 

Velocity 

after 

(mm/s) 

Ratio 

(after/before) 

Gradual 0.236  

0.006 

0.112  

0.006 

0.4730.028  

Sharp 0.538  

0.010 

0.193  

0.009  

0.360  0.017 

Note that the error propagation for 

width ratios was used, except for 𝑗1, 𝑗2 and 

∆𝑗1, ∆𝑗2 being velocities and error in velocity 

respectively. 

The images for the gradual and sharp 

transitions are shown in Figure 5. Note that the 

sharp transition had air bubbles near its 
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corners, which made it more akin to the gradual 

transition than a sharp width change. 

 
Figure 5 Images of the gradual (left) and sharp 

(right) channels. The sharp channel has air bubbles 

in its corners, appearing as dark circles. 

The flow remained laminar, as 

evidenced by the smooth, non-crossing 

pathlines even after the expansion. The sudden 

expansion likely resulted in a larger, steady, 

laminar separation bubble. Because expansion 

introduces recirculation, local pressure drop 

increases, slightly reducing measured 𝑈𝑚𝑎𝑥,2 

relative to theory. 

In the gradual transition, the measured 

ratios were 0.4730.028, compared to the 

theoretical of 0.530  0.006, giving around an 

11% difference. The reason for this could have 

stemmed from difficulty measuring the true 

centerline velocity, slight out-of-plane flow. 

For the sharp expansion, the measured velocity 

ratio of 0.360 ± 0.035 showed excellent 

agreement with the theoretical prediction of 

0.361, differing by less than 1%.  

Flows are used in everyday lives, such 

as in home plumbing and HVAC systems, 

automotive and aerospace engineering, and 

more. Smooth flow transitions (maintaining 

laminar flow) are preferred because it results in 

lower energy consumption, reduced friction 

and drag, and more predictable, stable flow. 

Even though in this scenario the sharp 

transition yielded small error and results closer 

to theory, this is mostly due to unquantifiable 

experimental error. Also, it is important to note 

that the air bubbles in the sharp transition 

channel mimicked the slow and gradual width 

change in the gradual change channel, not 

completely and accurately reproducing 

behaviour that a regular sharp channel would, 

which is probably why the results agreed so 

closely to theory. 

5. Conclusion  

In summary, the experimental results 

strongly supported theoretical fluid mechanics 

principles in a microfluidic context. The 

relationship between syringe height and 

channel velocity was confirmed to be linear, as 

predicted by the viscous-dominated Hagen-

Poiseuille model. The principle of mass 

conservation was validated in width-changing 

channels, with measured velocity ratios 

showing excellent agreement (sharp change) 

and good agreement (gradual change) with 

theory. While the velocity profile in the straight 

channel followed a parabolic trend, significant 

fitting errors highlighted the impact of 

experimental limitations. The main sources of 

error were pixel-length measurement 

uncertainty, channel imperfections, and 

transient flow effects like air bubbles. 
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7. Appendix 

Using Bernoulli’s Equation (Equation (1)), if we assume viscous frictional loses are 

negligible, 𝑆1 ≫ 𝑆𝑖 , and therefore 𝑈1 ≈ 0 (nozzle approximation). We are also using the same 

assumption that 𝑃1 = 𝑃6 = 𝑃𝑎𝑡𝑚, and that point 6 is at the reference height so 𝑧3 = 0, then 

Bernouilli’s equation reduces to 

𝑃𝑎𝑡𝑚 +
1

2
ρU1

2 +  ρgz1 = 𝑃𝑎𝑡𝑚 +
1

2
ρ U6

2 + ρgz3
2 (1) 

0 +
1

2
ρ(0) 

2 +  ρgz1 = 0 +
1

2
ρ U6

2 + (0)2 (2) 

ρgz1 =
1

2
ρ U6

2 (3) 

And so, we derive Torricelli’s law: 

U6
 = √2𝑔𝑧1 (4) 

Using the continuity equation, that  
Q = 𝑆3𝑈3 = 𝑆6𝑈6 (5) 

We can substitute for 𝑈6 and get the relation 

U3
 =

𝑆6

𝑆3
√2𝑔𝑧1 (6) 

Considering 𝑆6, 𝑆3, and 𝑔 are known constants, we can simplify to  

U3
 = 𝑘√𝑧1 (7) 

For some constant k = 
𝑆6

𝑆3
√2𝑔. This does not agree with the equation, as it now provides a square 

root relationship rather than a linear. This is because Hagen-Poiseuille models the microfluidic 

regime, where flow is dominated by viscuous resistance, and the pressure dorp (in turn flow rate) 

would in turn be linearly proportional to the height different when resistance is constant. This is 

more accurate to reality, as viscuous forces would dominate over interital forces (giving a low 

Reynolds number). However, Bernouilli assumes an ideal, inviscid fluid with no energy losses, 

where the velocity would be related to the conversion of potential energy into kinetic energy.   
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