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1. Introduction

Microfluidics is the study of systems
with fluids inside channels of microscopic
widths. Microfluidic devices have been used to
detect cancers, analyze DNA, and study
bacteria, among other applications [1].

The objective of this experiment is to
validate theoretical microfluidic flow models
by measuring bead velocities in channels of
varying geometry. An important equation for
incompressible flow of a streamline is
Bernoulli’s Equation, shown below, for density
p, speed v, gravity g, height z, and pressure P.

% pv? + pgz + P = constant (1D

Note that Equation (1) does not apply to
viscous and turbulent flow. However, other
methods to model these flows are complex, so
an ideal laminar flow approximation is used. At
steady flow, the volume of fluid past a cross-
sectional area is assumed to be constant with
respect to time. From conservation of mass,
Equation (2) applies, where A;, v; refers to the
cross-sectional area and speed of fluid at point
i, respectively.

j-vldA1 = fvszz (2)

If the flow is constant in any cross-section,
it reduces to the continuity equation v;A; =
v, A,. Furthermore, for volume flow rate Q,
pressure difference AP, dynamic viscosity
coefficient u, and length of pipe section L,
Hagen-Poiseuille’s law [2] gives Equation (3),
for an incompressible, Newtonian fluid in
laminar flow through a cylindrical pipe.

2
Q= 8L (3)

In this report, I will use the above equations
to examine the flow of fluid through four
different channels (straight, bent, gradual
change, sharp change), and discuss their
behaviors in each one.

(AP + pgAz)

2. Experimental Procedures

The experiment used a microscope to
observe fluid flow through a
polydimethylsiloxane (PDMS) microfluidic
chip. The chip was connected with tubing to a
syringe, mounted on a movable stand to control
the driving pressure through a hydrostatic head
(syringe height). A reservoir collected the waste
fluid. The working fluid was a suspension of
fluorescent beads in ethanol. Flow was induced
by gravity, and bead motion was captured with
the microscope's camera in fluorescence (TX2
filter) mode. Flow velocity (v) was determined
by measuring the streak length (d) of beads
during a known camera exposure time (t) using

the relation v = %. A detailed step-by-step

procedure is provided in the lab manual [2].

To convert from pixels to physical
units, the scale bar present in each image was
used. Using MS paint, 44.913 um
corresponded to 288 pixels, giving a
conversion factor of 0.1559 pm/pixel. All
distance measurements in pixels were
multiplied by this factor. The software used to
get pixel length had an accuracy of 1 pixel.

3. Error Analysis

I first achieved a quantifiable reading
error, as many of the streaks were blurry and
getting the width of each wasn’t the same each
time. A standard deviation of the measurement
of one point was taken, to be around 1.817
pixels, higher than 1 pixel, which I took as my
reading error.

Each picture had an exposure time
associated with it, where the error was taken to
be the precision of the measurement to the least
significant digit (e.g. 0.17392 seconds would
have £ 0.00001s). Note that because the time
measurements were extremely precise, the
errors for velocity were dominated by streak
measurements.

For the conversion of each pixel
measurement to metres, there was error
associated with the scale measure, AL, being
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0.001 pm from the image accuracy. There
was also Apx = 1.817 pixels, being my
reading error. Therefore, the propagated
error AP for each pixel conversion P for L =
44913 um, px = 288 pixels is given in
Equation (4), and calculated to be AP =
0.001 pm with the stated values.

AL\?  (Apx)\?
wer (B2 o
L px
When converting from pixels to meters,
x, if x = P = d, for P the conversion factor and

d the length in pixels, the propagation Ax is
given in Equation (5).

oo [ ()

For example, if d = 15 pixels, x =
2.34 um, P is the conversion factor and AP =
0.001 pum/px,

(5)

Ax = 2.339 0.001 1.817\?
v =233~ || gio73 | +(55)
288
= 0.284um

To calculate the velocity error, I first
took the kinematics equation v = f, for v
velocity, x distance and t time.
Differentiating v with respect to x and
t, I achieved the expressions in Equation (6).
dv 1 dv —x
== ©)
dx t Ot t
Using the calculus-derived error
propagation [3], I rearranged my terms, going
through Equations (7-9) to arrive at Equation
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Equation (10) gives the final velocity
error propagation. A sample calculation with
this would be to take an exposure time t =
0.134s, At = 1ms, a streak length of x =
2.339 um, Ax = 0.284um, and a calculated
v = 0.017 m/s, from Equation (5), to yield

o= (0017 ™ (02847 (L2107 ?
v =007 (2.339) * < 0.134s )
Av = 0.002m/s

Some non-quantifiable errors that
appeared in the chip were air bubbles. An
example of this is most prominent in the image
for sharp width change, in Figure 5. These
caused blockages, increasing local flow
velocity and pressure drops, and potentially
introducing unsteady, turbulent-like flow
patterns.

Note that the visual inspection of the
channels showed minor wall imperfections,
with roughness estimated from pixel variation
to be on the order of 1.092 £ 0.001 pm. This
was achieved through taking the standard
deviation of wall measurements across images
and using error propagation stated in Section 3.
These imperfections enhance viscous friction
near the walls, distorting the velocity profile
from its ideal parabolic shape. This increased
wall shear stress leads to a higher pressure drop
for a given flow rate and can reduce the mean
streamwise velocity. While the impact of these
imperfections is likely small compared to other
errors like air bubbles, they contribute to a
systematic deviation from theoretical
predictions.

4. Results and Discussion

In the following section, I will describe
the behaviour of the flow through each channel
type, and how they follow the equations
outlined in the introduction of the report.

4.1. Flow Through a Straight

Channel

The flow in the straight channel was
observed, with the image shown in Figure 1.
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Figure 1 Straight channel image, with scale in the
bottom left corner

As seen by the apparently straight flow
lines (red streaks), the flow seems to be laminar
as no streaks cross each other, and all run
parallel to the channel walls.

For pressure-driven laminar flow between
two parallel plates, the velocity profile is
parabolic, following the no-slip condition.
Therefore, the maximum velocity is expected at
the channel centerline. Conversely, the
maximum velocity gradient (shear rate) occurs
at the walls, where the velocity changes from
zero to the free-stream value. I observe this
trend in Figure 1, where most streaks are
shorter near the walls and longer at the center.

The velocity profile of the channel is
shown in Figure 2, compared with a parabolic

fit in green.
Velocity Profile Straight Channel with Parabolic Fit
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Figure 2 Velocity profile of the straight channel,

with error bars (too small to be seen) and a

parabolic fit in green. The equation is
v=((1.98240.211)* 108 ) x2+((1.511+17.698) *
10* )x+(4.126 +56.67). The R-squared value is
around 0.897.

The measured profile mostly follows a
parabolic trend; however, it has high error
values for its parameters, meaning it still is not
ideal. As well, while the R-squared value is
high, it’s not very close to 1 (closer to 0.9).
This is likely due to the channel imperfections
and the difficulty in measuring streaks very
close to the center where there is a lot of blur.

Based on the principles behind Bernoulli’s
equation (Equation (1)), the mean velocity can
be manipulated by changing the driving
pressure, which is a function of the syringe
height (pgAz). The experiment was idealized to
the model in Figure 3 in the lab manual [2], to
derive the relationship between changing
channel heights and velocity. For Q the
volumetric flow rate, the velocity U past a unit
area S would be given by Equation (11).

U=SQ

2
From equation 4, Q = 875;7 (AP +

(11)

pgAz). Between section 1 and 2, and 3 and 4,
there is a height difference, therefore both have

i
the form Q = == (P; — Piyy + pg(z; —

Z;41)), fori=1 and 2. For sections 2-3, 3-4, 4-
5, 5-6, they are all at the same height, meaning

52
— (P, —
8muL;

Pi+1 + pg(zi - Zi+1))5 for i:2539455~ Ifwe
were to sum the above, we would get an

expression like Equation (12), for R; = 87;”;" .

Z,APjergAzj =QZ,R,- (12)
L i

Note that };; AP; simply equals P; — P,
through terms cancelling out, and },; pgAz;

equals pg(z, — z3). Thus, we arrive at
Equation (13).

Py — Pg + Pg(Z1_23)=QZ_R]’ (13)

If the syringe free surface pressure and exit
are both atmospheric, P; — P = 0, and we get
Equation (14).

pg(zy — 2z3) = QZ_Rj

the pgAz term cancels, leaving Q=

(14)
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With Equation (11), Uz = S3Q, so we get
Equation (15), which can be arranged to
Equation (16).

U
pg(z, — 2z3) = 5—32.1?]' (15)
(2~ 2,)
Pg\Zy — Z3
Uy=—"—"— 16

Because all p, g, S5, R; are constants with
known values, we achieve the general formula,
Equation (17), where if z5 is to be taken as a
reference height located at z = 0, it simplifies
to Equation (18).

Us = k(z; —z3) = kAz 17)
Uz = kz, (18)

Thus, velocity scales linearly with height.

The syringe was changed to four different
heights, and the velocity in the channel was
measured at the same point at each height. The

result of this plotting is shown in Figure 3.
Velocities of the Middle of the Straight Channel for 4 Different Heights
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Figure 3 : Changes in velocity within the straight
channel at four different heights. The points show a
linear trend, approximately following v=(0.037 +
0.003)x + (0.42740.008). The R-squared value was
around 0.982.

From Figure 3, we see similarities
between the linear equation in Equation (18)
and the linear trend outlined by the blue line of
best fit. The R-squared value is high, close to 1,
and the errors are within 1% of values, showing
a close relationship between the linear fit and
observed data, greatly affirming Equation (18)
for change in velocity given different heights.
However, the fit is not perfect, likely attributed

to errors in height measurement, chip wall
imperfections, and reading error.

4.2. Flow Through a Bend

As flow in the chip went through bends,
streamlines would crowd together near the
outer concave wall, narrowing the stream tube
and increasing local velocity, while they
expanded near the inner convex corner,
contributing to the flow separation. The images
for the bent regions are shown in Figure 4.

Figure 4 : Images of two bent regions, the right
being the smooth (domed) bend and the left the
sharp (L-shaped) bend. Most particles are
streamlined closer to the middle, and circular
eddies form around the bend

Note that in the sharp bend (L-shaped),
a prominent flow separation bubble is located
at the inner (convex) corner, creating a
recirculating eddy. The smooth bend showed a
similar, but less prominent separation near the
bottom of the U, where most of the streamlines
appeared to still be laminar.

This difference arises because the
gradual curvature of the smooth bend allows
the flow to adhere to the wall, while the abrupt
turn in the sharp bend creates an adverse
pressure gradient that causes separation.
Although the pathlines are curved, they are
smooth and do not exhibit the random, chaotic
crossing or mixing characteristic of turbulent
flow. The observed eddies in the sharp bend are
steady, laminar separation bubbles, not
turbulent vortices.

The velocities before and after the bend
in each type of bend are recorded in Table 1.
Table 1: Velocities recorded before and after bends

for both sharp and smooth bends.

Type of
Bend

Velocity before
bend (mm/s)

Velocity after
bend (mm/s)
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Sharp (L-  0.726 +0.012 0.775+0.012
shape) 0.292 +0.011 0.413 +0.011
Smooth 0.212+0.011 0.247 £ 0.011
(domed)  0.159 +0.006 0.198 +0.006

[ * Wy Umaxz

51
Sz lxw, Wy Ungxa
The widths of each channel (gradual and

sharp) are recorded in Table 2, for both before

Wy

For flow through a bend, considering the
channel width does not change before and after
bends, I originally expected the velocity to
decrease because of eddies forming near the
curve (where flow would not be streamline).
However, the data in Table 1 shows slight
increases in velocities before and after bends.

I hypothesize this is due to more
complicated theory, such as how flow through
a curved pipe develops secondary vortices and
the r.m.s. (fluctuation) of velocities increase
due to mean strain from curvature [4].
Therefore, the bend introduces a centrifugal
force that causes fluid near the outer wall to
speed up and a return flow near the inner wall
(the ‘Dean’ vortex pair). The redistribution
leads to a higher axial velocity along the
centreline (or shifted centre of max velocity)
than upstream.

4.3. Effects of Varying Channel Widths
Looking at the channels with width
change, the theoretically expected centerline
flow velocity ratio was calculated with
Equation (19), derived from Equation (3)
assuming the height did not change.
2
0= 8mul

Using the fact that the average flow
velocity (Ugperage) 1s half that of the centerline
velocity (Uy,qx) [2], and conservation of mass,

(apP) (19)

where for volumetric flow rate Q, Q;, = Qout»
we arrive at Equation (20), a restating of
Equation (2).

S Uavg 1 =352 Uavg 2 (20)

Relating Equation (20) with = Umax =
UaverageWe get the ratio in Equatlon (21), for
centerline velocities Up,qx.1, Unax,2-
S U
_1 — max,2 (2 1)
SZ Umax,l
Assuming the channels are rectangular, the
area ratio would reduce to Equation (22).

and after, noting the ratio change —

Table 2 Widths before and after for gradual and
sharp channels, along with the ratio of width before
to width after.

Type of Width Width Ratio

channel before (um) after (um) (before/after)

Gradual 69.017 130.206 £ 0.530 £0.006
+0.686 1.148

Sharp 72.314 + 200.254+ 0361 £0.010
0.709 1.710

Note that the error for each ratio was
calculated as in Equation (23), for j;, J,
quanties before and after, A j the error in each
quantity, R the ratio and AR the error in the
ratio. In this case, j;, j, are the widths, Aj;, Aj,
the errors in widths, and R the width ratio.

Aj;,  Aj
AR=R |22
J1 J2

Similarly, the velocities before and after
each channel change were recorded in Table 3,

(23)

. .U
alongside the ratio —22*2
max,1

Table 3: Velocities before and after for gradual and
sharp channels, along with the ratio of velocity
after to velocity before.

Type of Velocity Velocity Ratio

channel before after (after/before)
(mm/s) (mm/s)

Gradual 0.236+ 0.112+ 0.473+0.028
0.006 0.006

Sharp 0.538+  0.193 0.360 £ 0.017
0.010 0.009

Note that the error propagation for
width ratios was used, except for j;, j, and
Aj;, Aj, being velocities and error in velocity
respectively.

The images for the gradual and sharp
transitions are shown in Figure 5. Note that the
sharp transition had air bubbles near its
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corners, which made it more akin to the gradual
transition than a sharp width change.

Figure 5 Images of gradual (left) and sha
(right) channels. The sharp channel has air bubbles
in its corners, appearing as dark circles.

The flow remained laminar, as
evidenced by the smooth, non-crossing
pathlines even after the expansion. The sudden
expansion likely resulted in a larger, steady,
laminar separation bubble. Because expansion
introduces recirculation, local pressure drop
increases, slightly reducing measured U,y 4y -
relative to theory.

In the gradual transition, the measured
ratios were 0.473+0.028, compared to the
theoretical of 0.530 + 0.006, giving around an
11% difference. The reason for this could have
stemmed from difficulty measuring the true
centerline velocity, slight out-of-plane flow.
For the sharp expansion, the measured velocity
ratio of 0.360 £ 0.035 showed excellent
agreement with the theoretical prediction of
0.361, differing by less than 1%.

Flows are used in everyday lives, such
as in home plumbing and HVAC systems,
automotive and aerospace engineering, and
more. Smooth flow transitions (maintaining
laminar flow) are preferred because it results in
lower energy consumption, reduced friction
and drag, and more predictable, stable flow.
Even though in this scenario the sharp
transition yielded small error and results closer
to theory, this is mostly due to unquantifiable
experimental error. Also, it is important to note
that the air bubbles in the sharp transition
channel mimicked the slow and gradual width
change in the gradual change channel, not
completely and accurately reproducing

behaviour that a regular sharp channel would,
which is probably why the results agreed so
closely to theory.

5. Conclusion

In summary, the experimental results
strongly supported theoretical fluid mechanics
principles in a microfluidic context. The
relationship between syringe height and

M channel velocity was confirmed to be linear, as

predicted by the viscous-dominated Hagen-
Poiseuille model. The principle of mass
conservation was validated in width-changing
channels, with measured velocity ratios
showing excellent agreement (sharp change)
and good agreement (gradual change) with
theory. While the velocity profile in the straight
channel followed a parabolic trend, significant
fitting errors highlighted the impact of
experimental limitations. The main sources of
error were pixel-length measurement
uncertainty, channel imperfections, and
transient flow effects like air bubbles.
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7. Appendix

Using Bernoulli’s Equation (Equation (1)), if we assume viscous frictional loses are
negligible, S; > §;, and therefore U; = 0 (nozzle approximation). We are also using the same
assumption that P, = Pg = P,;,,, and that point 6 is at the reference height so z3 = 0, then
Bernouilli’s equation reduces to

P, 1 U? =P, 1 U2 2 1
am +5PUT + pgZ1 = Parm + 5 p Us + pgzs3 (D
0+1 (0)? + pgz =0+1 UZ + (0)? (2)
> p P8Z1 2 p Us
1

pgzy = 5p Ug 3)

And so, we derive Torricelli’s law:
Uy = /292, (4)

Using the continuity equation, that
Q = 53Uz = S6Us (5)

We can substitute for Uy and get the relation
Se

U3 =g112g21 (6)

Considering S, S5, and g are known constants, we can simplify to
Uz = kyz; (7)
For some constant k = z—ﬁw/ 2g. This does not agree with the equation, as it now provides a square
3

root relationship rather than a linear. This is because Hagen-Poiseuille models the microfluidic
regime, where flow is dominated by viscuous resistance, and the pressure dorp (in turn flow rate)
would in turn be linearly proportional to the height different when resistance is constant. This is
more accurate to reality, as viscuous forces would dominate over interital forces (giving a low
Reynolds number). However, Bernouilli assumes an ideal, inviscid fluid with no energy losses,
where the velocity would be related to the conversion of potential energy into kinetic energy.
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