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1 Abstract

In this experiment, the charge-to-mass ratio of an electron
is investigated by analyzing the trajectory and radius of an
electron as it passes through a pair of Helmholtz coils. The
calculated external magnetic field, Be is (−1.1± 0.2)× 10−4

µT, almost twice as high as the Earth’s magnetic field in
Toronto, with opposite polarity. The charge-to-mass ratio of
an electron was found to be between (3.5± 0.2)× 1011C/kg
and (9.7± 0.9)× 1010C/kg, with percent differences around
100% and 45% respectively. The electrons through the coils
shifted under the influence of a ferromagnetic object, which
was more apparent in circles with a smaller radius.

2 Introduction

In the presence of a magnetic field(B⃗, magnitude B), a par-
ticle with charge e and mass m deflects upon experiencing a
force (F⃗ ), given by (Zhan, Horsley, and Harlick 2025).

F⃗ = ev⃗ × B⃗ (1)

Under a constant B⃗, the particle moves in a closed circular
orbit of radius r. The curvature of the electron orbit (r)
under a potential difference ∆V is found by
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In this experiment, B⃗ is generated by the current (I) through
a pair of Helmholtz coils (see Figure 1). The radius of each
coil R and the coil separation are equal, thus stabilizing the
magnetic field B near the centre of the pair of coils. For
µ0 = 4π×10−7TmA−1 and distance z, B is thus found to be

B =
µ0IR
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2(R2 + z2)3/2
(3)

Over a volume with a geometrical coil of the configuration,
the magnetic field from the coils are

Bc = (
4

5
)3/2

µ0nI

R
(4)

where n is the number of turns in each coil. The total axial
magnetic field is uniform, being a sum of the field from the
coils and the external field of Earth, as

B⃗ = B⃗c + B⃗e (5)

Using Equation 5 to expand for Bc and Equation 2, the
resulting equation is
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or, alternatively,
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where kc =
1√
2
( 45 )

3/2 µ0n
R is the characteristic of coil dimen-

sions and I0 = Be

kc
is a constant proportional to the external

magnetic field. In this experiment, we utilize these relations
to investigate the charge-to-mass ratio of an electron through
a pair of Helmholtz coils, as well as determine the effects of
external magnetic fields on our setup.

3 Materials and Methods

The methods in this lab report adhere to the guidelines out-
lined in the ‘Charge-to-mass ratio’ manual (Zhan, Horsley,
and Harlick 2025). Figure 1 is a labeled apparatus lab setup.

Figure 1: A photo of the experimental apparatus, where EG
is the electron gun, GB the glass bulb, HC the Helmholtz
coils, MM1 the anode voltage meter, MM2 the coil current
meter, PB the power box, PS1 the anode and filament power
supply, PS2 the coils power supply, and R the rheostat

The experimental apparatus consists of a glass bulb (GB)
containing an electron gun (EG), positioned between two
Helmholtz coils (HC). All system power is routed through
a central power box (PB). Electrons are emitted from a hot
filament and accelerated through an anode by a 0–300V DC
power supply (PS1), while a 6.3V AC source from the same
unit powers the filament. The magnetic field is generated by
a current from an 8V DC power supply (PS2) connected in
series with a rheostat (R) and an ammeter (MM2).

To begin, the filament power supply was activated for 30
seconds to allow for thermal stabilization. Following this, the
anode voltage and Helmholtz coil power were turned on. In a
darkened environment, the electron beam becomes visible as
electrons excite the low-pressure hydrogen gas. The GB was
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rotated to reorient the magnetic field, ensuring the electrons
followed a closed, circular path instead of a helical trajectory.

Measurements were taken with a self-illuminated scale and
plastic reflector. To eliminate parallax, the image of the
electron beam (seen through the glass) was aligned at the
halfway point of the HC, with its reflection on the plastic re-
flector. Thus, the eye position was adjusted until the beam
and its reflection coincided, and the viewer’s line of sight was
perfectly perpendicular to the electron orbit. This ensures
the scale measurement accurately represents the diameter of
the path without perspective error. Furthermore, a camera
was aligned directly in front of the scale to capture the read-
ings. The camera ensured the viewer’s position was constant,
thus reducing parallax from eye movements. Two primary
datasets were collected: one maintaining a constant acceler-
ating potential (∆V ) while varying current (I), and another
maintaining a constant current while varying potential.

4 Data and Analysis

Table 1 shows the current measurements under a constant
voltage of 300V . It shows the radius of the path of the elec-
tron decreasing with increasing current. Increasing the coil
current strengthens the magnetic field, reducing the radius
of curvature for a fixed electron speed.

Current (±0.001A) Radius (±0.05cm)

1.174 5.75
1.483 4.28
1.788 3.53
2.257 2.65

Table 1: Radius measurements for a changing current for
the electron trajectory at a constant voltage of 300V . The
ammeter readings were noisy up to 0.001A, prompting the
error.

Similarly, the voltage measurements taken during a con-
stant amperage of 2.187A are shown in Table 2.

Voltage (±0.001V ) Distance (±0.05cm)

367.241 3.28

249.940 2.60

199.976 2.00

149.740 1.90

Table 2: Radius measurements for a changing voltage for
the electron trajectory at a constant current of 2.187A. The
voltmeter readings were noisy up to ±0.001V , creating the
error.

By rearranging Equation 7, the ratio e
m was found by cor-

relating the Equation in Figure 2 with

Bc = α
1

r
−Be (8)

where α =
√

2m
e ∆V . Using Equation 8, the data from Table

1, and given n = 130 turns from the apparatus, Bc was

determined and used to find the background magnetic field.
These values are shown in Figure 2.

Figure 2: Linear fit (top) and residual plot (bottom) of Bc

according to Equation 8, using the correction in Equation
9. The equation of the line is Bc = (4.1 ± 0.1) × 10−5( 1r ) +
(1.1±0.2)×10−4 Tesla. The mean residual was −2.1×10−6

T with a standard deviation of 1.4 × 10−5 T. Some vertical
and horizontal error bars in the figure are too small to see.

For radii where 0.2R < ρ < 0.5R, the B field value should
be adjusted by

B(ρ)

B(0)
= 1− ρ4

R4(0.6583 + 0.29 ρ2

R2 )2
(9)

for ρ = r in this scenario (Zhan, Horsley, and Harlick 2025).
Since R = 16 cm, and the radii recorded all fall within this
range, we apply this correction. The error propagation for
Bc is outlined in Appendix 6.1.

The reduced chi-squared for Figure 2 is 0.990, suggesting
the model is consistent with uncertainties in the data, and
the residuals (deviations) are exactly what is expected based
on the estimated measurement errors, and on average, each
data point lies just within its designated error bar of the
fitted line.

The y-intercept of the linear plot in Figure 2 gives the value
for −Be, according to Equation 8 which is (1.1± 0.2)× 10−4

Tesla. The Earth’s magnetic field is around 25− 60 µT, and
around 55 µT in Toronto (Government of Canada n.d.). This
means that Be = (1.1± 0.2)× 10−4 µT achieves a value that
has, in magnitude, a percent difference of 101.450%, but is
opposite in direction the Earth’s (Kale 2026).

Given the value of α = (4.1 ± 0.1) × 10−5Tm,∆V =
300.000V ± 0.001V , e

m is

e

m
= (3.5± 0.2)× 1011C/kg
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This value has a percent difference of 100.370% from the
charge-to-mass ratio of 1.758820× 1011C/kg (Byjus 2011).
Another way of calculating this ratio is by rearranging

Equation 7 in the form y = mx+ b to take the form
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r (10)

By plotting
√
∆V on the y-axis and the radius r on the x-

axis, from the data in Table 2, e
m can be extracted from the

slope, given kc =
1√
2
( 45 )

3/2 µ0n
R = (5.17±0.02)×10−4TmA−1,

and I0 = Be

kc
from previous calculations. The calculations for

error are done in Appendix 6.2.

Figure 3: Linear fit (top) and residual plot (bottom) of
Equation 10. The equation of the line is

√
∆V = (4.5 ±

0.2) × 102(r) + (4.3 ± 0.5)V 0.5m−1. The mean residual was
−1.5 × 10−9V 0.5 with a standard deviation of 0.5V 0.5m−1.
Some vertical error bars in the linear fit are too small to see.

From applying the slope in Equation 10, the calculated

e

m
= (9.7± 0.9)× 1010C/kg

This yields a percent error of 44.660%, which is a 55.710%
decrease from the previous method. The chi-squared value
is 11.000, suggesting that the model is a poor representa-
tion of the data, or that the uncertainties in the data were
significantly underestimated.

5 Discussion and Conclusion

The two calculated values for the electron charge-to-mass
ratio e

m = η are η1 = (3.5 ± 0.2) × 1011 C/kg and η2 =
(9.7± 0.9)× 1010 C/kg, deviate from the literature value of
1.758820 × 1011 C/kg by ≈ 100% and ≈ 45% respectively.

While Table 1 showed a reduced chi-squared near unity, the
high χ2 ≈ 11 for Table 2 suggests that uncertainties were un-
derestimated or dominated by systematic drifts. The dom-
inant uncertainties were systematic, arising from voltmeter
charging, coil heating, and geometric misalignment, rather
than random measurement noise.

A primary candidate for systemic sources of error is
likely the voltmeter ”charging effect” mentioned in the man-
ual, where charge accumulation causes fluctuations in the
recorded ∆V . Additionally, thermal heating in the rheostat
during Table 2 trials could cause a current drift, creating a
non-constant magnetic field Bc not reflected in the ammeter
readings. Geometrical misalignments also play a significant
role; if the glass bulb is not perfectly centered, the off-axis
distance ρ varies non-uniformly throughout the path, break-
ing the symmetry assumed in Equation 7 and even the cor-
rection factor in Equation 9.

The calculated external field Be = (1.1 ± 0.2) × 10−4 T
is roughly twice the magnitude of Earth’s magnetic field in
Toronto ( 50 µT), indicating significant local magnetic con-
tributions beyond the geomagnetic field. The positive in-
tercept (and negative Be) from Figure 2 implies the local
background field was oriented anti-parallel to the coils’ axial
field. This environmental sensitivity was confirmed by the
significant beam deflection observed when a ferromagnetic
object was introduced.

At the highest possible current and low voltages (∆V <
145 V), creating strong magnetic fields, the beam dimmed
significantly as electrons lacked the kinetic energy to be ex-
cited. These lower velocities made the beam more susceptible
to forming helical paths rather than circular ones, indicating
that small velocity components parallel to the magnetic field
(due to bulb misalignment) became dominant. This shows
that not all parts of the trajectory were impacted, as the elec-
tron trajectory was visible when it shone towards the back
of the GB, but was unable to form the ring structure. As
well, note that a helical circle has velocity that is both paral-
lel and perpendicular to the electron’s motion, and because
radius is proportional to the perpendicular velocity, a lower
velocity would yield a smaller electron charge to mass ratio.

While we assume a uniform field Bc at the center, the field
actually decreases as the electron moves away from the cen-
tral axis (ρ increases), creating varied electron trajectories.
Meanwhile, under a constant voltage, higher currents caused
a decrease in ring radius (see Table 1. This could be because
as current increases and accelerating voltage decreases, the
resistance faced by the conducting wire, and thus the elec-
trons decreases, prompting a smaller trajectory as they have
greater velocity (Power and brightness of bulbs 2024). It was
noted that as the radius decreases, helices begin to form (no
longer a perfect circle), and the bulb needs to be readjusted.

Restoring a circular path required manual bulb rotation
based on visual intuition rather than precise measurement,
which introduced systematic bias and slight deviations from
a perfect perpendicular orbit. Furthermore, the convex ge-
ometry of the glass bulb likely caused the path to appear
optically larger than its physical dimensions. Furthermore,
the convex geometry of the glass bulb likely caused the orbit
to appear optically larger than its true dimensions. Because
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e
m ∝ 1/r2, even a slight overestimation of r leads to a signif-
icantly lower calculated ratio, as can be seen in the second
method.

Despite the systematic uncertainties, the experiment suc-
cessfully demonstrated the prediction of circular electron
motion and highlighted the sensitivity of charge-to-mass
measurements to experimental alignment and environmental
magnetic fields. Future iterations of this experiment could
be improved by using a digital camera with a telecentric lens
to eliminate optical distortion and by increasing the desig-
nated uncertainty in r to ±0.1 cm to better reflect the finite
width of the electron beam.
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6 Appendix

6.1 Error Propagation For Bc

Note that we use Bc with the corrected magnetic field such
that Bc = Bideal(I) · Bp(r), with Bideal = ( 45 )

3/2 µ0nI
R , Bp =

1 − ρ4

R4(0.6583+0.29 ρ2

R2 )2
. Therefore, the error propagation for

Bc = Bideal ∗Bρ is

∆Bc =

√
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∆I)2 + (

∂Bc

∂r
∆r)2 (11)

where ∂Bc

∂I = Bc

I and ∂Bc

∂r =
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∂r = − 4kR2r3

(kR2+mr2)3 for

k=0.6538, m=0.29. Therefore, Equation 11 can be rewrit-
ten as
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or even
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I
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Bρ(kR2 +mr2)3
∆r)2 (12)

for ∆I = ±0.001A,∆r = ±0.05cm

6.2 Error Propagation for e
m

Method 1: Using the calculation of Bc from the slope, e
m

has error propagated through Equation 7, giving

∆(e/m)

e/m
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∆V
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2
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Where ∆(∆V ) = 0.001V , ∆α is the standard error in cal-
culating slope, outlined in PHY224H1F/324H1S Notes on
Error Analysis n.d.

Method 2: Using the voltage and radius dependence,

let S =
√

e
mkc

(
I + I0√

2

)
, the slope. To find the charge-

to-mass ratio, let η = e/m and
√
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)
turns to
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. This lets us quickly see that our expression

is a product of powers, therefore, the error is given by
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Because kc is proportional to R, ∆kc

kc
= ∆R

R . As well, if we

let C = I + I0√
2
, we can apply addition rule and propagate

from here. We can express our final uncertainty as
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(14)
where ∆S is uncertainty in the slope, ∆R is the measurement
uncertainty of the Helmholtz coil radius (±0.05 cm), ∆I is
the ammeter precision (±0.001 A), ∆I0 is the uncertainty in
the equivalent external field current, determined from the Be

y-intercept.
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