
Hospital Drones
GreenCare Systems

UTEK 2T6
Group 6

Table of contents

How is this used in our UI

How are we handling the optimization?

What are we using + why

What are we planning on doing

01.

03.

02.

04.

The Prompt + Our Take

Algorithms + Methods

Implementation

Future Steps

Problem Statement

● 2 main challenges of modern healthcare:
1. Fast response logistics

2. Design for Sustainability
(healthcare delivery systems account for 4.4% of GHG emissions) [1]

How can we optimize supply delivery in a sustainable
manner?

[1] https://global.noharm.org/sites/default/files/documents-files/5961/HealthCaresClimateFootprint_092319.pdf

https://global.noharm.org/sites/default/files/documents-files/5961/HealthCaresClimateFootprint_092319.pdf

Opportunity

Medical Supply Chain Optimization using DRONES inside
hospitals to deliver supplies using:

● Energy-efficient drones and routes
● Prioritize urgency
● Optimized sustainability

Introducing

GreenCare
 Systems

Who Are We?

● Optimizing the path of Matternet drones to ensure medical
personnel can get the fastest, most energy efficient delivery of
healthcare equipment within the hospital.

● Use Dijkstra and RRT algorithms to determine priority
deliveries among drones.

● Offering an interactive and easy-to-use UI for medical
professionals

Design Decisions
01.

Matternet Drones [1]
● Quadcopter system (vs helicopter system)

○ Low cost
○ Smaller blades → safer

● “speed up the transport of human specimen samples… by up
to 70%” (CEO of Labour Berlin)

● Good for short range delivery [2]

● First drone delivery system achieving standard Type C certification
and Production Certification [3]

● lightweight capacity (85% of e-commerce shipments and healthcare
products) [3]

● Widely implemented in healthcare for developing countries. [1]
[1] http://bulbuldelivery.com/how-ai-for-drone-technology-is-revolutionizing-delivery-routes/#:~:text=1.,conditions%20and%20wide-open%20areas.
[2]https://www.theverge.com/2024/10/3/24261066/matternet-m2-drone-delivery-service-silicon-valley-launch
[3]https://www.freightwaves.com/news/drone-disruptors-matternet-is-taking-cities-into-the-skies#:~:text=control%20the%20drones.-,We%20build%20not%20only%20the%20aircraft%20that%20flies%2C%20we%20also,and%20then%20how%20we%20land.&text=That%20sort%20of%20end%2Dto,our%20class%20in%
20regulatory%20approvals.%E2%80%9D&text=Matternet%20has%20been%20operating%20beyond,drone%20network%20in%20Abu%20Dhabi
[4] https://www.businesswire.com/news/home/20221130005322/en/Matternet-Receives-FAA-Production-Certificate-for-its-M2-Drone-Delivery-System

http://bulbuldelivery.com/how-ai-for-drone-technology-is-revolutionizing-delivery-routes/#:~:text=1.,conditions%20and%20wide-open%20areas
https://www.theverge.com/2024/10/3/24261066/matternet-m2-drone-delivery-service-silicon-valley-launch
https://www.freightwaves.com/news/drone-disruptors-matternet-is-taking-cities-into-the-skies#:~:text=control%20the%20drones.-,We%20build%20not%20only%20the%20aircraft%20that%20flies%2C%20we%20also,and%20then%20how%20we%20land.&text=That%20sort%20of%20end%2Dto,our%20class%20in%20regulatory%20approvals.%E2%80%9D&text=Matternet%20has%20been%20operating%20beyond,drone%20network%20in%20Abu%20Dhabi
https://www.freightwaves.com/news/drone-disruptors-matternet-is-taking-cities-into-the-skies#:~:text=control%20the%20drones.-,We%20build%20not%20only%20the%20aircraft%20that%20flies%2C%20we%20also,and%20then%20how%20we%20land.&text=That%20sort%20of%20end%2Dto,our%20class%20in%20regulatory%20approvals.%E2%80%9D&text=Matternet%20has%20been%20operating%20beyond,drone%20network%20in%20Abu%20Dhabi
https://www.businesswire.com/news/home/20221130005322/en/Matternet-Receives-FAA-Production-Certificate-for-its-M2-Drone-Delivery-System

Matternet Drones [1]
● Max payload: 2kg (4.4 lbs)

○ P = b0 + w*b1
■ b0 = power for drone frame
■ b1 = power for each additional kg

● ~1.08 Wh/mkg payload
● Max speed: 57.6km/h = 16m/s
● Max range:

○ 20 km with a 1 kg payload
○ 15 km with a 2 kg payload

Used in items.py and energy.py for payload and energy (recharge,
ability to do delivery) calculations

[1] https://www.sciencedirect.com/science/article/pii/S0925527319300106

http://items.py
http://energy.py
https://www.sciencedirect.com/science/article/pii/S0925527319300106

Algorithm
Our system uses a hybrid pathfinding
approach combining:

1. Dijkstra’s Algorithm: used
by Uber. Energy efficient. [1]

2. Modified RRT Algorithm:
path-planning algorithm
while avoiding obstacles.
Good for emergency and
high priority drones during
intersections. [2]

[1] https://ioaglobal.org/blog/how-uber-utilises-data-science/#:~:text=Route%20optimisation%20is%20crucial%20for,and%20speed%20of%20the%20service.
[2] https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378

https://ioaglobal.org/blog/how-uber-utilises-data-science/#:~:text=Route%20optimisation%20is%20crucial%20for,and%20speed%20of%20the%20service
https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378

Where do we fit?
Dijkstra RRT Combined RRT + Dijkstra

Purpose Closest path Path planning w/
collision
avoidance

Optimal routing with dynamic obstacle
avoidance

Used in Optimal drone
assignment
based on
shortest path
distance

Navigate around
obstacles and
other drones in
real-time

1. Dijkstra finds the closest drone and
initial optimal path
2. RRT refines the path dynamically,
avoiding collisions and other drones

Innovation Graph-based
routing through
hospital
hallways, not just
Euclidean
distance

Extended with
3-lane traffic
system and
priority-based
yielding

Combines graph-based optimality
(Dijkstra) with free-space flexibility (RRT)

Location: `graph.py` -
`find_closest_drone_location()`

Location: `rrt_pathfinding.py` -
`_is_collision_free()`

3-lane
system!Dijkstra [1]

RRT [2][1] https://www.codecademy.com/article/dijkstras-shortest-path-algorithm
[2] https://www.cs.cmu.edu/~motionplanning/lecture/lec20.pdf

https://www.codecademy.com/article/dijkstras-shortest-path-algorithm
https://www.cs.cmu.edu/~motionplanning/lecture/lec20.pdf

Location: `service.py` - `_assign_drone_to_request()` Location: `rrt_pathfinding.py` -
`_is_collision_free_with_lanes()`

3-laneCombined

Innovation: 2-3 lane system
● Each hallway supports 3 drones

side-by-side (3+m width total)
● Priority-based lane assignment:
● Emergency/high-priority drones

→ middle lane
● Normal/low-priority drones →

left/right lanes
● Lower-priority drones yield to

higher-priority ones

What Makes us Innovative?

03.

Strengths Weakness

Opportunities Threats

● Medical professionals can focus on tasks
● Time efficient (average 45 seconds to use

program) compared to walking
● Dijkstra and RRT algorithm = accurate and

energy efficiency
● Multiple trips enabled for sustainability
● Uses Triage system, used in hospitals [2]

● Don’t work both inside and outside
hospitals

● See future steps!

● UAV for emergency drones = efficient
○ Drones go to closest charging station

instead of back to storage
● Allow patients to use the app as well
● Assess priority of drone delivery
● Implementing sanitation area drones

● Making sure routes avoid areas near MRI
scans or high danger areas for certain time
periods.

● Other algorithms
● Made of carbon fibre + composites [1]

(tradeoff with being lightweight)
● Untested noise level. No parachute

features
[1] https://www.designlife-cycle.com/drones#:~:text=The%20use%20of%20carbon%20fiber,internal%20components%20are%20working%20properly
[2] https://pub-haldimandcounty.escribemeetings.com/filestream.ashx?DocumentId=3293#:~:text=The%20Canadian%20Triage%20and%20Acuity,figure%201%20for%20further%20details

https://www.designlife-cycle.com/drones#:~:text=The%20use%20of%20carbon%20fiber,internal%20components%20are%20working%20properly
https://pub-haldimandcounty.escribemeetings.com/filestream.ashx?DocumentId=3293#:~:text=The%20Canadian%20Triage%20and%20Acuity,figure%201%20for%20further%20details

Competitor Analysis
Zipline [1, 2] GreenCare

Systems
Delivery Drone
Canada [3, 4]

Emergency Vehicle
Response System +

Customization
✘ ✔ ✘

Path Planning +
Optimization Algorithms ✔ ✔ ✔
App controlling what is

delivered ✔ ✔ ✘
Priority Queue + Speed

Adjustments ✘ ✔ ✘

[1]https://dronedeliverycanada.com/technology/advanced-drone-technology-the-canary-rpa/#:~:text=In%20addition%2C%20the%20Canary%20is,commercial%20route%20for%20the%20Canary.

[2]https://dronedeliverycanada.com/technology/advanced-drone-technology-the-canary-rpa/#:~:text=In%20addition%2C%20the%20Canary%20is,commercial%20route%20for%20the%20Canary.

[3] https://www.zipline.com/about/zipline-fact-sheet

[4] https://www.zipline.com/technology

https://dronedeliverycanada.com/technology/advanced-drone-technology-the-canary-rpa/#:~:text=In%20addition%2C%20the%20Canary%20is,commercial%20route%20for%20the%20Canary
https://dronedeliverycanada.com/technology/advanced-drone-technology-the-canary-rpa/#:~:text=In%20addition%2C%20the%20Canary%20is,commercial%20route%20for%20the%20Canary
https://www.zipline.com/about/zipline-fact-sheet
https://www.zipline.com/technology

Key Features

Drones will be charged with solar energy
● Emergency charging stations powered

by battery

Requesters are able to manually mark a drone as “Force
Emergency Flag” → allow drones to travel quicker

If one drone cannot get everything →
automatically sends two drones

● Prioritizes important items

Drone Charging

Manual Override

Item Assortment

Some Sample Outputs

*Calculated from Matternet data shown previously, in UI, from 4 requests alone!

Sample Drone outputs

UI Design

● Sections are organized
in terms of relevance

Section Placement

UI Design

● Shows status of
Request, moves to
completed, can
choose to show
completed for past
30 mins or not

● Shows drone
statuses

User Friendliness

UI Design

● Click on sections on map
to selection location for
delivery

● Clickable drones to see
where drone is delivering
to

Interactive Map

● Provide a priority rank for
getting your request fulfilled

Next Steps

03.

Extra Features That Need Work

Testing BLE or RFID so drones relay task priority and implement the
path optimization algorithms.

Implementing UAV so multiple optimally placed charging
ports allow for drones to dock at closest charging station.

Include sanitation zones for drones/areas only certain
drones are able to access via fobs (activated/deactivated
based on location+routes they use)

Alerts section: indicate if any issues arose with a
drone + automatically send out a replacement drone

Mobile App - Patients

● Order food
● Request basic items (bandaids, water)

Key features

● Sign in with personal ID and number
○ Require ID verification

● Once registered, app connects to database
containing all key information

Accessibility

Integrate LLM
● Take description and items selected → rank

priority within the CTAS levels

CREDITS: This presentation template was created
by Slidesgo, and includes icons by Flaticon, and
infographics & images by Freepik

Thank You!
Do you have any questions?

Please keep this slide for attribution

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

Files
Frontend
● index.html
● map.css

Backend
● main.py - entry point, initialization, and example usage
● api.py - Flask REST API server for frontend integration
● rrt_pathfinding.py - RRT* (rapidly-exploring random tree) algorithm integration for

collisions and drone paths
● graph.py - hospital graph with weighted Dijkstra implementation
● models.py - data structures (location, drone, request, priority, patient)
● energy.py - energy calculations, track energy + CO2 savings
● service.py - drone assignment with priority queue and RRT path planning implementation
● items.py - item catalog and payload management
● patients.py - patient database and vitals management
● map.js - three.js-based 3D/2D hospital map (SVG for 2D)

http://main.py
http://api.py
http://graph.py
http://models.py
http://energy.py
http://service.py
http://items.py
http://patients.py
http://map.js
http://three.js

models.py
Key feature: CTAS (Canadian Triage and Acuity Scale) - medical priority system
● Request Class: Represents a delivery request from hospital staff.

Defines all the core data structures (classes)
used throughout the system.

Key feature: Tracks full lifecycle from
creation to completion with energy
savings
● Drone class: Represents a physical

drone in the system.
● Two types of drones
● Location Class
● State machine for request

lifecycle
● Patient Class: Vital Priority System

- automatically calculates priority
based on patient condition

service.py
Main feature: DroneAssignmentService

The heart of the system - manages requests,
drone assignments, routing, and energy
calculations.

Feature: Priority Queue System
● Uses min-heap (Python's `heapq`)
● Lower priority value = higher

priority (CTAS I = 1 is most urgent)
● Automatically processes highest

priority requests first
● Ensures emergency requests are

always handled first

service.py
Main feature: Combines Dijkstra
(optimal assignment) + RRT (dynamic
avoidance)

The heart of the system - manages requests,
drone assignments, routing, and energy
calculations.

Feature: Full lifecycle tracking with
automatic assignment

● Energy cycles calc
● Drones can intercept additional

requests while in flight
● Tracks battery levels for each

drone
● Compares actual path

(RRT+Dijkstra) vs next quickest
path

● Priority-based speed

service.py

api.py Flask REST API that connects frontend to backend
service layer.

● Creates hospital graph
with all locations

● Initializes 20 drones (6
emergency, 14 normal)

● Sets up charging stations

energy.py
Main feature: Energy required to take a trip for Data and To take a trip

Feature: Determining the amount of
energy based on the payload provided
by the drone.

- Compared the energy and the
average time taken with walking,
using electric carts and traditional
vehicles for data.

- Determines the CO2 saved (in kg)

items.py
Key Feature: Figuring out the amount of drones needed based on payload for
the items that are requested.

Catalogue of most common items request by medical professional with
weight for ordering

rrt_pathfinding.py
- It picks a random path its starting point

- Finds the Euclidean distance to get the trajectory and determines if
there are obstacles like drones in the way.

- Calculates the cost of the trajectory to get the

minimum cost

- If RRT takes too long, Dijkstra’s algorithm will

be used instead.

graph.py
Represents hospital layout as a data
structure and models the hospital as a
graph
● Nodes = locations (rooms, charging

stations)
● Edges = pathways (hallways)
● Weights = travel time/distance

between times
 Implemented Dijkstra for shortest path
finding (closest drone based on path
distance)

main.py
Initialized locations of rooms, charging
stations, sample paths

Generating the paths for drones (charging
pathway, hospital pathway)

System flow chart
Models.py: Data structures (Request, Drone, Location, Priority)
Service.py: Business logic (assignment, routing, energy, battery)
API.py: REST endpoints (create request, get status, statistics)

Request created
`POST

/api/request/create`

Service Layer
`create_request()` adds

to priority queue

Auto Assignment
`_assign_drone_to_request()`

● Finds closest drone
(Dijkstra)

● Plans path (RRT with
collision avoidance)

● Assigns drone

Flight Updates
`update_drone_positions()`
moves drone along route

Completion
`POST

/api/request/<id>/com
plete`

Energy Calc +
Update

Calculates savings
vs traditional

method,
Cumulative totals

updated

Q&A
Q: How do you ensure emergency requests are
handled first?
A: We use a min-heap priority queue where lower
priority values (CTAS I = 1) are processed first. The
queue is sorted by priority value, then by waiting
time.

Q&A
Q: How do you find the closest drone?
A: We use Dijkstra's algorithm on the hospital
graph to find the shortest path distance, not just
Euclidean distance. This accounts for hallways and
pathways.

Q&A
Q: What happens if RRT pathfinding fails?
A: We fall back to Dijkstra's shortest path algorithm.
This ensures we always have a valid route.

Q&A
Q: How do you calculate energy savings?
A: We calculate drone energy consumption based
on distance and payload weight, then compare
against traditional methods (vehicle, electric cart,
walking) using industry-standard formulas.

Q&A
Q: Can drones handle multiple requests?
A: Yes! We have multi-stop optimization. When a
drone is in flight, we evaluate if accepting a second
request is energy-efficient. If it saves energy or is
within 2.53% of baseline, the drone intercepts the
new request.

Q&A
Q: How do you prevent collisions?
A: RRT pathfinding with 3-lane traffic system.
Emergency drones get middle lane, normal drones
use left/right lanes. Lower priority drones yield to
higher priority ones.

Q&A
Q: What's the difference between emergency and
normal drones?
A: Emergency drones are faster (4 m/s vs 2.5 m/s),
can only handle emergency requests, and get
priority in the 3-lane system (middle lane).

Q&A
Q: How do you track battery?
A: Each drone has a battery level. When it drops
below threshold, we automatically send it to the
nearest charging station before it can accept new
requests.

Q&A
Q: What data does the frontend get?
A: Everything! Request status, drone positions,
routes, energy savings, statistics, graph structure
for visualization. The API provides full system state.

Q&A
Q: How do you handle concurrent requests?
A: Thread-safe implementation using Python's
threading.Lock() to prevent race conditions when
multiple API requests modify the same data.

