>

Hospital Drones
GreenCare Systems

o |\ UTEK 2T6
~ Group 6

Table of contents

B Ol. The Prompt + Our Take

How are we handling the optimization?

B 02. Algorithms + Methods

What are we using + why

B 03. Implementation

How is this used in our Ul

B O4. Future Steps

What are we planning on doing

Problem Statement -

e 2 main challenges of modern healthcare: 5 L’
1. Fast response logistics

2. Design for Sustainability
(healthcare delivery systems account for 4.4% of GHG emissions) [1]

How can we optimize supply delivery in a sustainable
manner?

m https://global.noharm.org/sites/default/files/documents-files/596 1/HealthCaresClimateFootprint 092319.pdf

https://global.noharm.org/sites/default/files/documents-files/5961/HealthCaresClimateFootprint_092319.pdf

Opportunity

Medical Supply Chain Optimization using DRONES inside
hospitals to deliver supplies using:

e Energy-efficient drones and routes
e Prioritize urgency

e Optimized sustainability \

Introducing
GreenCare
Systems

Who Are We?

e Optimizing the path of Matternet drones to ensure medical
personnel can get the fastest, most energy efficient delivery of
healthcare equipment within the hospital.

e Use Dijkstra and RRT algorithms to determine priority
deliveries among drones.

e Offering an interactive and easy-to-use Ul for medical
professionals

Matternet Drones [1]

Quadcopter system (vs helicopter system)
Low cost
Smaller blades -» safer
“speed up the transport of human specimen samples... by up
to 70%"” (CEO of Labour Berlin)
Good for short range delivery [2]

First drone delivery system achieving standard Type C certification
and Production Certification [3]

lightweight capacity (85% of e-commerce shipments and healthcare
products) [3]

Widely implemented in healthcare for developing countries. [1]

http://bulbuldelivery.com/how-ai-for-drone-technology-is-revolutionizing-delivery-routes/#:~:text=1.,conditions%20and%20wide-open%20areas
https://www.theverge.com/2024/10/3/24261066/matternet-m2-drone-delivery-service-silicon-valley-launch
https://www.freightwaves.com/news/drone-disruptors-matternet-is-taking-cities-into-the-skies#:~:text=control%20the%20drones.-,We%20build%20not%20only%20the%20aircraft%20that%20flies%2C%20we%20also,and%20then%20how%20we%20land.&text=That%20sort%20of%20end%2Dto,our%20class%20in%20regulatory%20approvals.%E2%80%9D&text=Matternet%20has%20been%20operating%20beyond,drone%20network%20in%20Abu%20Dhabi
https://www.freightwaves.com/news/drone-disruptors-matternet-is-taking-cities-into-the-skies#:~:text=control%20the%20drones.-,We%20build%20not%20only%20the%20aircraft%20that%20flies%2C%20we%20also,and%20then%20how%20we%20land.&text=That%20sort%20of%20end%2Dto,our%20class%20in%20regulatory%20approvals.%E2%80%9D&text=Matternet%20has%20been%20operating%20beyond,drone%20network%20in%20Abu%20Dhabi
https://www.businesswire.com/news/home/20221130005322/en/Matternet-Receives-FAA-Production-Certificate-for-its-M2-Drone-Delivery-System

Matternet Drones [1]

e Max payload: 2kg (4.4 |bs)
P = b0 + w*bl
bO = power for drone frame
bl = power for each additional kg
~1.08 Wh/mkg payload
e Max speed: 57.6km/h =16m/s
e Max range:
20 km with a 1 kg payload
15 km with a 2 kg payload

a0 'loowk(kjﬁbnﬂem fite

Uffﬁgh]nabnw.,

Tmc 2 200

\ E
bl;ﬁ‘?x v‘w:;dt xrv:?\whole hospitat(ReadMe > ¥
M?O?th —asy Stowt e W30Sy ,. 3
S‘?'Mh/kﬁ (O 7 "”“th ole Wietth, of hospiter S

)300»% avenl
(b s |§ImE W,

d] 3 213/ Of bavew b '”-'x"‘*"

! “:'100 ac(15000 V\/{‘\Arb
; I At?n(v\ o w?
\mum\haw»{“’)
Z@Z@I@ﬂ&é@ 14: éﬂ@

Used in items.py and energy.py for payload and energy (recharge,

ability to do delivery) calculations

[1] https://www.sciencedirect.com/science/article/pii/S0925527319300106

http://items.py
http://energy.py
https://www.sciencedirect.com/science/article/pii/S0925527319300106

Algorithm

Our system uses a hybrid pathfinding
approach combining:

1. Dijkstra’s Algorithm: used
by Uber. Energy efficient. [1]

2. Modified RRT Algorithm:
path-planning algorithm
while avoiding obstacles.
Good for emergency and
high priority drones during

https://ioaglobal.org/blog/how-uber-utilises-data-science/#:~:text=Route%20optimisation%20is%20crucial%20for,and%20speed%20of%20the%20service
https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378

Where do we fit?

Purpose

Used in

Innovation

Dijkstra

Closest path

Optimal drone
assignment
based on
shortest path
distance

Graph-based
routing through
hospital
hallways, not just
Euclidean
distance

RRT

Path planning w/
collision
avoidance

Navigate around
obstacles and
other drones in
real-time

Extended with
3-lane traffic
system and
priority-based
yielding

Combined RRT + Dijkstra

Optimal routing with dynamic obstacle
avoidance

1. Dijkstra finds the closest drone and
initial optimal path

2. RRT refines the path dynamically,
avoiding collisions and other drones

Combines graph-based optimality
(Dijkstra) with free-space flexibility (RRT)

Location: "graph.py - Location: "rrt_pathfinding.py " -
" find_closest_drone_location()” " _is_collision_free()"

def find_closest_drone_location(self, requester_location_id: int,
drone_locations: List[int]) -> Optionallint]:
"""Find closest drone using Dijkstra's shortest path (not Euclidean
distance)"""

*“python
def _is_collision_free(self, point, other_drones, current_drone_id,
is_emergency, current_lane, current_priority_level):
"""Check collision with 3-lane system and priority-based yielding"""

for drone_id, trajectory in other_drones.items():
other_lane = getattr(other_pos, 'lane', 1)
other_priority = getattr(other_pos, 'priority_level', 3)

distances, _ = self.weighted_dijkstra(requester_location_id)

closest_id = None
min_distance = float('inf')
if current_lane other_lane:
dist = self._distance(point, predicted_pos)
if dist < self.lane_width *x 1.5:

for drone_loc_id in drone_locations:
if drone_loc_id in distances and distances[drone_loc_id] <
min_distance:
min_distance = distances[drone_loc_id]
closest_id = drone_loc_id

if (not is_emergency and current_priority_level < 4) and \
(other_is_emergency or other_priority >= 4):
return False

return closest_id

if other_is_emergency and not is_emergency:
emergency_safety_radius = self.obstacle_radius * 3.0
if dist < emergency_safety_radius:
return False

3'Iane return True

Dijkstra [1] system:

[1] https://Mmwww.codecademy.com/article/dijkstras-shortest-path-algorithm I ! I ! I [2]
[2] https://www.cs.cmu.edu/~motionplanning/lecture/lec20.pdf

https://www.codecademy.com/article/dijkstras-shortest-path-algorithm
https://www.cs.cmu.edu/~motionplanning/lecture/lec20.pdf

Location: “service.py - "_assign_drone_to_request()"

assign_drone_to_request(self, request: Request) -> bool:

Assign closest available drone to request using RRT path planning
is_emergency = request.emergency or request.priority.is_emergency
available_locations = self._get_available_drone_locations(for_emergency=is_emergency)
if not available_locations:

return False

closest_loc_id = self.graph.find_closest_drone_location(
request.requester_location_id, available_locations

)

if closest_loc_id is None:
return False

assigned_drone = None
for drone in self.drones.values():
if (drone.status == "available" and
drone.current_location_id == closest_loc_id and
drone.emergency_drone == is_emergency):
assigned_drone = drone
break

start_loc = self.graph.nodes[closest_loc_id]

goal_loc = self.graph.nodes[request.requester_location_id]

path = self.rrt_planner.plan_path_with_traffic_rules(
start_loc=start_loc,
goal_loc=goal_loc,
current_drone_id=assigned_drone. id,
is_emergency=is_emergency,
active_drone_flights=self.active_flights,
all_drones=self.drones,
current_priority_level=request.priority.value

if len(path) < 2:
path, _ = self.graph.find_shortest_path(closest_loc_id, request.requester_location_id)

assigned_drone.delivery_route = path
request.assigned_drone_id = assigned_drone.id
return True

Combined

def

Location: " rrt_pathfinding.py -
" _is_collision_free_with_lanes()"

_is_collision_free_with_lanes(self, from_point, to_point,

active_drone_flights, all_drones,
current_drone_id, lane_offset):

Check if path segment is collision-free considering 3-lane system

current_lane = lane_offset

for drone_id, flight_info in active_drone_flights.items():

if drone_id == current_drone_id:
continue

other_drone = all_drones.get(drone_id)
if not other_drone:
continue

other_priority = flight_info.get('priority_level', 3)
current_priority = ...

if current_priority < other_priority:
if self._same_lane_conflict(current_lane, other_drone, from_point, to_point):
return False

elif current_priority > other_priority:

pass

return True

‘ ‘ ; -

e Each hallway supports 3 drones
side-by-side (3+m width total)

® Priority-based lane assignment:

e Emergency/high-priority drones

Innovation: 2-3 lane system
> middle lane

I I
I I
| g |
I I
e Normal/low-priority drones - | |

|eft/rig ht lanes PASSING CENTER RIGHT
& 3 o LANE LANE LANE
® Lower-priority drones yield to ST ——
higher-priority ones

=
o
-
w
<
=
[a]
iy
=

ovative?

Strengths

Medical professionals can focus on tasks
Time efficient (average 45 seconds to use
program) compared to walking

Dijkstra and RRT algorithm = accurate and
energy efficiency

Multiple trips enabled for sustainability
Uses Triage system, used in hospitals [2]

Opportunities

UAYV for emergency drones = efficient °
o Drones go to closest charging station
instead of back to storage
Allow patients to use the app as well
Assess priority of drone delivery °
Implementing sanitation area drones

Weakness

Don’t work both inside and outside
hospitals
See future steps!

Threats

Making sure routes avoid areas near MRI
scans or high danger areas for certain time
periods.

Other algorithms

Made of carbon fibre + composites [1]
(tradeoff with being lightweight)

Untested noise level. No parachute
features

https://www.designlife-cycle.com/drones#:~:text=The%20use%20of%20carbon%20fiber,internal%20components%20are%20working%20properly
https://pub-haldimandcounty.escribemeetings.com/filestream.ashx?DocumentId=3293#:~:text=The%20Canadian%20Triage%20and%20Acuity,figure%201%20for%20further%20details

Competitor Analysis

Zipline [1, 2] GreenCare Delivery Drone
Systems Canada [3, 4]
Emergency Vehicle
Response System + x V x

Customization

Path Planning +
Optimization Algorithms

App controlling what is
delivered

Priority Queue + Speed
Adjustments

v
X
X

X | SIS
VIS S

[1]https://dronedeliverycanada.com/technology/advanced-drone-technology-the-canary-rpa/#:~:text=In%20addition%2C%20the%20Canary%20is,commercial %20route%20for%20the%20Canary.
[2]https://dronedeliverycanada.com/technology/advanced-drone-technology-the-canary-rpa/#:~:text=In%20addition%2C%20the%20Canary%20is,commercial%20route%20for%20the%20Canary.
[3] https://www.zipline.com/about/zipline-fact-sheet

[4] https://www.zipline.com/technology

https://dronedeliverycanada.com/technology/advanced-drone-technology-the-canary-rpa/#:~:text=In%20addition%2C%20the%20Canary%20is,commercial%20route%20for%20the%20Canary
https://dronedeliverycanada.com/technology/advanced-drone-technology-the-canary-rpa/#:~:text=In%20addition%2C%20the%20Canary%20is,commercial%20route%20for%20the%20Canary
https://www.zipline.com/about/zipline-fact-sheet
https://www.zipline.com/technology

Key Features

Drone Charging
Drones will be charged with solar energy 2
e Emergency charging stations powered =
by battery =

Item Assortment

If one drone cannot get everything »
automatically sends two drones
e Prioritizes important items

Manual Override

Requesters are able to manually mark a drone as “Force
Emergency Flag” » allow drones to travel quicker

R

)P

Total Environmental Impact Analysis

All Time [Last Week][Last Month][Last 6 Months]

Cumulative environmental impact from all drone deliveries. Data updates in real-time as requests are completed.

Cumulative Energy Saved Cumulative CO, Saved
[Cumulative Energy Saved (kWh) 1 Cumulative CO, Saved (kg)

0.0600 0.3000
- 0.0500 02500
2 00400 2 0.2000
3
§ 00300 g 0.1500
g 0.0200 g 0.1000
“ 0.0100 0.0500

0.0000 — 0.0000

Q"‘ Q“‘ Q“‘ & Q"‘ mq“ hq"‘ & WQ‘} & ,LQ"‘ & Q"‘ rﬁe‘“ Q“‘ Q"‘ q?q" &q““ é\q“‘ \,;z“‘ mq“‘ 'bq“‘ bq"‘ ‘OQ“‘ & Q““ Q“‘ @Q"‘ QQ“‘ (LQ“‘ é\Q“‘ &Q"‘
e & e 0‘5 d}’ \\0'5 o8 e" e" o’ e”‘ 6"—‘ 6” 6” \\.@ \\,_@, \\._@, \\,.@ \\,_55 _95 \\,9'5 o8 q" o" & e°‘ \6” F
Time Time

Total Energy Saved: 0.0432 kWh Total CO, Saved: 0.2936 kg
Average per Trip: 0.0144 kWh Trips with Data: 3

' *Calculated from Matternet data shown pr

i

Request #3 - J W Davis

(No description provided)

Payload: 1x Gauze Pack
Weight: 0.060 kg / 2 kg max Location: 7 | Completed: 1/11/2026, 9:49:41 AM
Drone ID: 4

View Path

Energy Savings Report

Distance Traveled: 0.124 km (124 m) Drone Energy: 0.1413 kWh
Traditional Energy: 0.1372 kWh Energy Saved: -0.0041 kWh
Savings %: -3.01%

CO, Emissions Saved: 0.1072 kg

Time Comparison (vs Walking at 3 mph / 4.828 Walking 1.54 min (92.5 Drone 0.83 min (49.6 Time 0.71 min (42.9 Speed 1.86x Time 46.4%
km/h) Time: sec) Time: sec) Saved: sec) Improvement: faster Savings:

Hospital Drone Logistics System

Real-Time Energy Savings & Drone Management Dashboard

ED @ worrens -

Hospital Map & Drone Tracker Create New Request

Requester ID
e.9., DROO1, NUOO1

Requester Name
e.g., Dr. Smith

Requester Location ID (Click a location on the map to select)
1-8,19-24
Click any location on the map (left side) to automatically fill this fied
Select Patient (Optional - Auto-fills prioritization data)

- Select a patient (optional) - v

Selecting a patient will automatically compute all prioritization factors from patient data. The algorithm
calculates age, clinical severity, life years gained, quality of life, and other factors automatically.
Reference: Dery et al. (2020) - A systematic review of patient prioritization tools

CTAS Priority Level (Canadian Triage and Acuity Scale)
CTAS IV - Less-urgent (Within 60 min - 85% within 60 min)
CTAS I & IT: Cardiac arrest, major trauma, shock, head injury, chest pain, internal bleeding
CTAS III: Mild-moderate asthma, moderate trauma, vomiting/diarrhea in <2 years

CTAS IV: Urinary symptoms, mild abdominal pain, earache
CTAS V: Sore throat, chronic problems, non-urgent psychiatric

Description (Optional)

Patient Details & Vitals Overview:
Name: Sarah Johnson

Status: monitoring

Symptoms: Severe abdominal pain, nausea, fever
Risk Score: 0.30

Days in Hospital: 1

Health Risks: obesity

Reason: Acute appendicitis, post-operative recovery

Requests () Auto-remove after 30 minutes

Heart Rate BP
91 bpm 106/74 mmHg
Temperature 0, Sat
38.3°C 98 % =
| Resp Rate | Pain
18 /min 9/10 No completed requests yet
Complete a request to see energy savings reports!
ul Vitals Over Time U Live Updated: 11:49:39 PM Last 12 hours Vv

Heart Rate & Respiratory Rate
[Heart Rste opm) [T Respiratory Rate (imin)

200
" NSAN AT WA
£ Al lry A A 190

Requests

Active Ci

Reawest #1. (D)

J W Davis (ID: 67)
® Location: 19

Payload: 1x Patient Chart, 1x X-Ray Film

Weight: 0.150 kg / 2 kg max Status: ASSIGNED | Created: 1/10/2026, 11:52:07 PM
Assigned to Drone #1 - Will auto-complete when drone arrives

1al Vital Priority Score: 64.34 (for tie-breaking within CTAS level)

System Statistics

-] rgency CTAST&II & Emergent)
Normal drones handle CTAS III, IV & V (Urgent, Less-urgent, Non-urgent)
Using Canadian Trage and Aculty Scale (CTAS) - CHS-ES-02-2017

Total Emergency Normal

20 6 14

(o] e

19 5 14
Available (Total) Available Emergency Available Normal
Total i Impact o P
a impact from all drone deliveries. Data updates in real-t ts pleted.
Cumulative CO, Saved
. S h OWS ® ro n - o] Gumative Energy Saved (o) o] Cumuiative GO, Saved bia)
08000
E 0.6000
statuses 1
L 0.2000

LT

@28
&

& E

0.0000 kWh Total €O, Saved: 0.0000 kg
0.0000 kWh Trips with Data: o

Hospital Drone Logistics System

Real-Time Energy Savings & Drone Management Dashboard

ED @ worrencs -

Hospital Map & Drone Tracker Create New Request

Requester ID
e.g., DROO1, NUOO1

Requester Name
e.g., Dr. Smith

Requester Location ID (Click a location on the map to select)
1-8,19-24
Click any location on the map (left side) to automatically fil this field
Select Patient (Optional - Auto-fills prioritization data)
v

- Select a patient (optional) -

Selecting a patient vill automatically compute all prioritization factors from patient data. The algorithm
calculates age, clinical severity, ife years gained, quality of life, and other factors automatically.
Reference: Dery et al. (2020) - A systematic review of patient prioritization tools

CTAS Priority Level (Canadian Triage and Acuity Scale)
CTAS IV - Less-urgent (Within 60 min - 85% within 60 min)

CTAS I & II: Cardiac arrest, major trauma, shock, head Injury, chest pain, internal bleeding
CTAS III: Mild-moderate asthma, moderate trauma, vomiting/diarrhea in <2 years

CTAS IV: Urinary symptoms, mild abdominal pain, earache
CTAS V: Sore throat, chronic problems, non-urgent psychiatric

Description (Optional)

Provide a p
getting your request

Requests () Auto-remove after 30 minutes

No completed requests yet
Complete a request to see energy savings reports!

Floor 1 - Main Hospital Floor

Storage ‘Storage
Pharmacy Imaging General Ward
Beds & Patient Rooms
Occupational Therapy
ENTRANCE Diagonistic Rooms
Waiting Area
Registration Desk ot O EMERGENCY ENTRANCE
D2
Waiting Area Operating Rooms

Cafeteria
ICU Emergency Dept.

e O

Specialized Lab Rooms

Floor 2 - Maternity & Specialized Care

Mother-Baby
Rooms

Consulting

C-Section Birthing Suite

STAIRS

Quarantine Rooms

D3

Engineering Room / Energy Room

STAIRS

Housekeeping

Laundry

Orthopedics

Multi-Drone Traffic System

View al active drones with pri

Path Efficiency Comparison

y

Comparison of actual drone paths (using RRT+Dijkstra together) vs the next quickest alternative path. Drones use Dijkstra to find the shortest path, then RRT for collision avoidance, so both algorithms work
together. Shows time savings and efficiency gains.

Traffic Visualization

Path Time Comparison Path Visualization

[Chosen Path (RRT) Time (s)

Next Quickest Path Time (s)
10

09
08
07
06
05
04 to view its chosen path

Select a completed request

Time (seconds)

03
02
0.1

Time

Average Time Saved: ~ Chosen Path (RRT) === Next Quickest Path @ Start @ End
Total Time Saved:

Average Efficiency:

Testing BLE or RFID so drones relay task priority and implement the
path optimization algorithms.

Implementing UAV so multiple optimally placed charging
ports allow for drones to dock at closest charging station.

Include sanitation zones for drones/areas only certain
drones are able to access via fobs (activated/deactivated
based on location+routes they use)

Alerts section: indicate if any issues arose with a
drone + automatically send out a replacement drone

Mobile App - Patients
Accessibility

e Sign in with personal ID and number
o Require ID verification
e Once registered, app connects to database
containing all key information

Key features

e Order food
e Request basic items (bandaids, water)

Integrate LLM

e Take description and items selected » rank
priority within the CTAS levels

Thank You!

Do you have any questions?

V®

CREDITS: This presentation template was created
by Slidesgo, and includes icons by Flaticon, and
infographics & images by Freepik

Please keep this slide for attribution

)

)

)4

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

Files

Frontend
® index.html
® map.css

Backend
® main.py - entry point, initialization, and example usage
® api.py - Flask REST API server for frontend integration

e rrt_pathfinding.py - RRT* (rapidly-exploring random tree) algorithm integration for
collisions and drone paths

patients.py - patient database and vitals management
map.js - three.js-based 3D/2D hospital map (SVG for 2D)

® graph.py - hospital graph with weighted Dijkstra implementation

® models.py - data structures (location, drone, request, priority, patient)

® energy.py - energy calculations, track energy + CO2 savings

® service.py - drone assignment with priority queue and RRT path planning implementation
® items.py - item catalog and payload management

o

®

http://main.py
http://api.py
http://graph.py
http://models.py
http://energy.py
http://service.py
http://items.py
http://patients.py
http://map.js
http://three.js

I I l Od e I S. py Defines all the core data structures (classes)

used throughout the system.

Key feature: CTAS (Canadian Triage and Acuity Scale) - medical priority system
® Request Class: Represents a delivery request from hospital staff.

‘id®, ‘requester_id', ‘requester_name’

Key feature: TraCkS fU” IifeCyCIG from ‘requester_location_id® - Where the request is coming from
creation to completion with energy DRBGRAGT S o sl Ul

o “emergency’ - Boolean flag
savings ‘status’ - PENDING, ASSIGNED, IN_TRANSIT, COMPLETED, CANCELLED

'Y Drone class: Represents = physica] ‘assigned_drone_id® - Which drone is handling this
. ‘energy_saved_kwh', ‘co2_saved_kg' - Energy metrics (after completion)
drone in the system.

e Two types of drones
° Location Class *id*, “current_location_id® - Where the drone is

Stat h. f t ‘status’ - available, assigned, in_transit, charging
- ate machine 1or reques “emergency_drone’ - Boolean (emergency vs normal drone)

Iifecycle ‘battery_level_kwh' - Current battery

P Patient Class: Vital priority System “delivery_route’” - List of location IDs for current route
_ automatically calculates priority “current_speed_m_per_sec’ - Speed based on priorityi
based on patient condition

Se rVi Ce. py The heart of the system - manages requests,

drone assignments, routing, and energy
calculations.

Main feature: DroneAssignmentService

def __init_ (self, hospital_graph: HospitalGraph):

Feature: Priority Queue System self.graph = hospital_graph

() UseS min-heap (Python's X heapq‘) self.requests: Dict[int, Request] = {}
e Lower priority value = higher G s Wi i TN

priority (CTAS | =1is most urgent) self.active_flights: Dict[int, dict] = {}
. AUtOmatica”y processes h|ghest self.rrt_planner = RRTPathPlanner(...)
priority requests first
e Ensures emergency requests are
always handled first

Se rVi Ce. py The heart of the system - manages requests,

drone assignments, routing, and energy
calculations.

Main feature: Combines Dijkstra def _assign_drone_to_request(self, request: Request) —> bool:
(optimal assignment) + RRT (dynamic
avoidance)

closest_loc_id = self.graph.find_closest_drone_location(
request.requester_location_id, available_locations

)
Feature: Full lifecycle tracking with

automatic assignment

e Energy cycles calc

e Drones can intercept additional
requests while in flight if len(path) < 2:

e Tracks battery levels for each path, _ = self.graph.find_shortest_path(...)
drone

e Compares actual path
(RRT+Dijkstra) vs next quickest
path

e Priority-based speed

path = self.rrt_planner.plan_path_with_traffic_rules(...)

create_request() -» _assign_drone_to_request() -

update_drone_positions() - complete_request()

service.py

1. xx create_request() "%k — Creates new request, automatically assigns
drone

2. xx _assign_drone_to_request() xx - Core assignment logic (Dijkstra +
RRT)

3. xx complete_request() xx — Marks request complete, calculates energy
savings

*xx"get_request_status() xk — Returns current request status
. %k get_statistics() xk — System-wide stats (total energy saved, etc.)
. %% update_drone_positions() %k — Updates drone locations during flight
% _check_and_intercept_request() %k — Multi-stop optimization
. ¥k get_energy_report() %k - Detailed energy savings report

([)
a I Flask REST API that connects frontend to backend
. service layer.

app = Flask(__name__)
app.run(host='0.0.0.0"', port=5001, debug=True)

- Serves web dashboard at “http://localhost:5001/"
- REST API endpoints at '/api/x"

POST /api/initialize

e Creates hospital graph
with all locations

e Initializes 20 drones (6
emergency, 14 normal)

e Sets up charging stations

energy.py

Main feature: Energy required to take a trip for Data and To take a trip

Feature: Determining the amount of
energy based on the payload provided

by the drone.
- Compared the energy and the (00 tees e :
. . . 1f payload_weight_kg <=
average time taken with walking,
using electric carts and traditional payload_multiplier = .9
Vehicles for data. elif payload_weight_kg <= 1.0:
payload_multiplier = ©.9 (payloa
- Determines the CO, saved (in kg)
extra_weight = payload_weight_kg -
payload_multiplier = 1.0 (extra

ms.py

Feature: Figuring O\Ae al
e items that are requested.
Catalogue of most common ite

e rordering @classmethod
g def split_payload(cls, item_quantities: Dict[str, int], patient_critical: bool = False) -> List[C

eeded based on pa

est by medical professional

|payload into multiple requests if it exceeds capacity
priotizie items based on patient condition - most critical items go first
Args:
item_quantities: Dictionary mapping item_id to quantity
patient_critical: True if patient is in critical condition
Returns:list of item_quantities dictionaries, each representing one drone load, prioritized
if not item_quantities:
return []
calc total weight
total_weight = cls.calculate_total weight(item_quantities)

if total_weight <= cls.MAX_PAYLOAD_CAPACITY_KG: '

rrt_pathfinding.py

- It picks a random path its starting point

- Finds the Euclidean distance to get the trajectory and determines if
there are obstacles like drones in the way.

- Calculates the cost of the trajectory to get the p< o

Mminimum cost iy iy
- If RRT takes too long, Dijkstra’s algorithm will Pofieail i thallocones ekl

be used instead.

def plan_path_with_traffic_rules(
self,start_loc: Location, goal_loc: Location,

) -> List[int]:
-
other_drone_positions: Dict[int, List[DronePosition]] = {}
for drone_id, flight_info in active_drone_flights.items():
if drone_id == current_drone_id:

| continue

drone = all_drones.get(drone_id)

if not drone or drone.status not in ["assigned", "in_transit"]:
| continue

RRT to plan collision-free path
path = self.plan_path_with_avoidance(
start_loc=start_loc,
goal_loc=goal_loc,
current_drone_id=current_drone_id,
is_emergency=is_emergency,
other_drones=other_drone_positions,
max_iterations=300@ if is_emergency else 500 # emergency drones get faster planning
)
if path is None or len(path) < 2:
to simple shortest path
path, _ = self.graph.find_shortest_path(start_loc.id, goal_loc.id)
return path

current_drone_id: int, is_emergency: bool,active_drone_flights: Dict[int, dict], all_drones: Dict[int, 'Drone'] # type: ignore

— . |
estimate positions along route
positions = []
current_time = 0.0
for i, loc_id in enumerate(route):
if loc_id in self.graph.nodes:
loc = self.graph.nodes[loc_id]
speed = drone.current_speed_m_per_sec if drone else 2.5
est time to reach this Location
1t 1 >l
prev_loc = self.graph.nodes[route[i-1]]
dist = self.graph.euclidean_distance(prev_loc, loc)
current_time += dist / speed
is_emerg = drone.emergency_drone if drone else False
positions.append(DronePosition(
drone_id=drone_id,
location_id=loc_id,
x=loc.x,
y=loc.y,
z=0.0,
timestamp=current_time,
is_emergency=is_emerg,
speed=speed

ef weighted_dijkstra(self, start_id: int, target_id: Optional[int] =) -> Tuple[Dict[int, float], Dict[int, int]]:
if start_id not in self.nodes:
ValueError(f"Start location {start_id} not in graph")

or node_id in self.nodes}

graph.py

Represents hospital layout as a data

current_dist, current_id = heapq.heappop(pq)

structure and models the hospital as a

continue

g ra p h visited.add(current_id)
® Nodes = locations (rooms, charging

stations)
. Ed g es = pathways (h a I IWayS) 1r cu;;‘;antAi ;;lf.adjacencyAlist:

for neighbor_id, edge_weight in self.adjacency_list[current_id]:
if neighbor_id in visited:

e \Weights = travel time/distance | oo

between times
Implemented Dijkstra for shortest path ettt oor g = ot

previous[neighbor_id] = current_id

finding (closest drone based on path e meapposn (4, (nw_aiot, neignir_56)
dista nce) return distances, previous

current_id == target_id:

Location(1, "Emergency Room", @, @,
Location(2, "ICU", 62, 0, 1),
Location(3, "Pharmacy", 124, 0, 1),
Location(4, "Lab"™, 186, ©, 1),
Location(5, "Cafeteria", @, 60, 1),
Location(6, "Ward A", 62, 60, 1),
Location(7, "Ward B", 124, 60, 1),
Location(8, "Surgery”, 186, 60, 1

®
al t s for m v]
I I l a I n Location(19, "Radiology", 31, 3@, 1),
® Location(20, "Physical Therapy", 93, 30, 1),
Location(21, "Cardiology", 155, 30, 1),
Location(22, "Oncology", 31, 99, 1),
Initialized locations of rooms, charging Locbiom 2% coruopeiitesy T 8y 1)
h Location(24, "Neurology", 155, 99, 1),
stations, sample paths

Generating the paths for drones (charging _
pathway, hospital pathway) S Eaata s L

start_location_id = rightmost_location_id
service.add_drone(start_location_id, emergency_drone=

drone = service.drones[service.next_drone_id - 1]
drone.status = il "

drone.is_charging = F

drone.battery_level kwh

normal_drone_count = 14
for i in range(normal_drone_count)
First t

start_location_id = leftmost_location_id
else:

start_location_id = rightmost_location_id
service.add_drone(start_location_id, emergency_dron:
ma on 2
drone service.drones[service.next_drone_id - 1]
drone.status = il "
drone.is_charging
drone.battery_level_kwh

return service

System flow chart

Models.py: Data structures (Request, Drone, Location, Priority)
Service.py: Business logic (assignment, routing, energy, battery)
APIl.py: REST endpoints (create request, get status, statistics)

Request created Service Layer
"POST “create_request()” adds
/api/request/create” to priority queue

Energy Calc +
Update

Calculates savings Completion

vs traditional /apifre ;Zg/s;ridﬁcom
method, PUTed :
plete

Cumulative totals
updated

Auto Assignment
" _assign_drone_to_request()"
e Finds closest drone
(Dijkstra)
° Plans path (RRT with
collision avoidance)
° Assigns drone

Flight Updates
“update_drone_positions()”
moves drone along route

Q&A

Q: How do you ensure emergency requests are
handled first?

A: We use a min-heap priority queue where lower
priority values (CTAS | =1) are processed first. The
queue is sorted by priority value, then by waiting
time.

Q&A

Q: How do you find the closest drone?

A: We use Dijkstra's algorithm on the hospital
graph to find the shortest path distance, not just
Euclidean distance. This accounts for hallways and
pathways.

Q&A

Q: What happens if RRT pathfinding fails?
A: We fall back to Dijkstra's shortest path algorithm.
This ensures we always have a valid route.

Q&A

Q: How do you calculate energy savings?

A: We calculate drone energy consumption based
on distance and payload weight, then compare
against traditional methods (vehicle, electric cart,
walking) using industry-standard formulas.

Q&A

Q: Can drones handle multiple requests?

A: Yes! We have multi-stop optimization. When a
drone is in flight, we evaluate if accepting a second
request is energy-efficient. If it saves energy or is
within 2.53% of baseline, the drone intercepts the

new request.

Q&A

Q: How do you prevent collisions?

A: RRT pathfinding with 3-lane traffic system.
Emergency drones get middle lane, normal drones
use left/right lanes. Lower priority drones yield to
higher priority ones.

Q&A

Q: What's the difference between emergency and
normal drones?

A: Emergency drones are faster (4 m/s vs 2.5 m/s),
can only handle emergency requests, and get
priority in the 3-lane system (middle lane).

Q&A

Q: How do you track battery?

A: Each drone has a battery level. When it drops
below threshold, we automatically send it to the
nearest charging station before it can accept new
requests.

Q&A

Q: What data does the frontend get?

A: Everything! Request status, drone positions,
routes, energy savings, statistics, graph structure
for visualization. The API provides full system state.

Q&A

Q: How do you handle concurrent requests?

A: Thread-safe implementation using Python's
threading.Lock() to prevent race conditions when
multiple API requests modify the same data.

