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Preamble:

Image processing is the manipulation of digital images by applying mathematical tools and algorithms. A wide range
of applications based on digital image processing are, for example, medical imaging, image optimization in consumer
cameras, computer vision, and satellite imagery. Linear algebra, and the techniques you will learn during this course,
plays a crucial role in that field by providing a mathematical foundation.

A typical digital image can be considered as a 2-dimensional matrix of pixels (abbreviation for picture element). Meth-
ods of digital image processing are manipulating this 2D-matrix. A pixel is the smallest element of a digitally acquired
raster image, and can be considered as a colour sample at each point of an image. Typically, each pixel is represented
by 3 positive integer values from 0 to 255 for each colour red, green, and blue: 0 is representing black and 255
(= 28 — 1) either red, green, or blue. In that case, 24 Bits are used to code 16,777,216 distinct colours for each pixel.
This is called a 24 bpp (24 Bits-per-pixel) colour depth. If a grey-scale image is sampled, each pixel samples the light
intensity. In that case, only 8 Bits (single integers from 0 to 255) are typically necessary, as shown in Figure 1, to store

grey-scale images.
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Figure 1: Grey-scale image represented by 8 bpp (Bits-per-pixel). [source: stanford.edu]

One application of linear algebra in the context of digital image processing is for a linear transformation of the im-
ages / 2D-matrices. We will discuss linear transformations in more detail later this term. Common transformations
include scaling, rotation, and translation of the image. All of these linear transformations can be represented by a
matrix multiplication.

Another important application of linear algebra in the context of digital image processing is filtering, which will
be explored in Question 1 of this assignment. Filtering includes, for example, methods for noise reduction, blur-
ring/sharpening, edge detection, white balancing, colour correction, and many more.

Lastly, images have to be stored in efficient ways. For a colour image of size n x m with a 24 bpp colour depth,
m x n x 24 Bits of memory are necessary. An image of 8000 x 6000 Pixels (4:3 aspect ratio and 48MP resolution
of modern smartphone cameras) with 24 Bit colour depth will lead to an uncompressed image filesize of 144 MB. To
reduce the image filesize, lossy (permanently removing unnecessary information of the original image) and lossless
compression methods are applied. For lossy compression algorithms, it is vital to identify unnecessary information
of the image, which are not perceived by the viewer and can be removed. One approach for a lossy compression is
based on the Singular Value Decomposition (SVD), which will be explored in more detail in Question 2.
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Question 1:
For simplicity, we assume that each pixel of a grey-scale image is considered as a real value in Question 1(a) to
(e). Let G € "R™ be a grey-scale image of n x m pixels. A collection of image filters F}, F», ..., F € "R™ can

be used to process this image, resulting in filtered images A; represented as:

Ai=F oG, 1=12...k, (1)
where o denotes the entry-wise product. The entry-wise product (also called Hadamard product) of two matrices
of the same size is defined as the product, where each entry of the resulting matrix is the product of the corre-
sponding entries of the original matrices. For example, if P = [ pin pr2 ] and Q = { G i ] are 2 X 2

D21 P22 21 422
matrices, the Hadamard product is defined as

PoQ= [ P11q11  Pi12912 ] . @)
P21421  P22422

(a) Can the filter F; in Equation (1) be used to blur or smooth an image A;? Unsupported answers will not
receive full credit.
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(b) Name at least three applications in the context of digital image processing for a filter as defined in Equa-
tion (1). Additionally, give details how F; would look like for your applications.
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(c) Assume that the entries of the image G are all nonzero. Prove that the set of filtered images {F} o G, F5 o
G,..., F,oG} islinearly independent if and only if the set of filters { F}, F5, . . ., F} } is linearly independent.
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(d) Assume that the entries of the image G are all nonzero. Let W be the set of the filtered images {F; o G, Fy o
G, ..., F o G}. Suppose a new image filter F,11 is introduced. Prove that the filtered image F} 11 o G lies
in span W if and only if F)11 is a linear combination of { F}, Fb, ..., Fi}.
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(e) Assume F} = [ (1) (1) ], Fy = [ (1) (1] }, and I3 = [ (1) (1) } are filters for a grey-scale image G' € *R?.

Verify whether the filters Fi, F5, F3 are linearly independent, and determine whether Fy = { ? le } lies
in the span of {F}, F», F5}.
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(f) For saving grey-scale images A of size n x m pixels in an efficient way, each pixel is stored as an 8 Bit integer,
where 0 represents black and 255 represents white (see preamble). Let V be the set of these grey-scale images.
Is V a vector space if one uses entry-wise vector addition and scalar multiplication?
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Question 2:
Let A € ™R"™ be a grey-scale image of size m X n, where each entry is representing a grey pixel. As you learnt in
ESC103, the rank of an n X m matrix is the number of linear independent rows, which is the same as the number
of the linear independent columns.

The Singular Value Decomposition' of a matrix A is a way of writing A as the product of three matrices:

A=UxvT ®3)
with the matrices U, ¥, and V7T defined as
o1 0 vl
g9 V2T
A= [ u; uz -+ Up—-1 Up ] (4)
Or—1 Vr—lT
0 Oy VrT

where u; are the columns of U and v/ are the rows of V7. The matrix ¥ is a diagonal matrix with the entries
o; on the diagonal (the diagonal entries of ¥ are nonnegative and all other entries of 3 are zero). Because X is
diagonal, Equation (4) can be written as:

T T T T
A=u01v1" +u209ve” + -+ Ur10,—1Ve_1" + U0, Vy . (5)

As you can see, A is separated into the sum of (rank=1) matrices of the form o;wyvi L. With that, the sum in
Equation (5) can be expressed as

A= Z oiuvy (6)
i=1

with r so called singular values {o; € R | o; > 0} and both {u;,...u,} € ™R and {vy,...v,} C "R are
orthonormal sets of vectors.

What’s an “orthonormal set of vectors? In simple language, each vector has length one and any two vectors are
perpendicular (also called “orthogonal”). More specifically, two vectors, x,y € "R, are called orthogonal if and
only if their dot-product is equal to zero: x -y = x’'y = 0. The set {x1,X2,...xx} C "R is an orthogonal set
of vectors if and only if every pair of vectors is orthogonal: x; - x; = 0if i # j. The set {x1,%2,... x5} € "R
is an orthonormal set of vectors if and only if every pair of vectors is orthogonal and each vector has length 1:
x;-x; =0ift #jand x; - x; = 1 forevery 1 < 4,5 < k.

At the end of this course, you will have the tools you need to be able to find the SVD of a general matrix.? We
can use Equation (5) to compress the image A by keeping the “most relevant” terms in the sum: As you can see
from Equation (5), some matrices o;u;vi could be neglected if o; is very small. Therefore, a typical strategy for
compressing images is putting the singular values o; in nonincreasing order, o1 > g2 > ...0, > 0 (as well as
sorting the corresponding u; and v; in U and V/, respectively) and only storing k < r of these components in an
image file (k is an integer of at least 1). The compressed image Ay, is constructed as

k
A=) o] ™)
i—1

This will reduce the image size dramatically, however, the image quality will be degraded if k was picked too
small, see for example Figure 2 where 30 components were used (k = 30) for the compression of the initial
grey-scale image.

!In this writing assignment, we are introducing you to the compact (or reduced) SVD, which is slightly different from the full SVD. To save
space, we refer to it as the “SVD” throughout.
2For the curious: u; are eigenvectors of the matrix AAT and v; are eigenvectors of the matrix AT A.
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Original Image 5 Compressed image with 30 singular values

500

600

700
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Figure 2: Lossy compression of a 700 x 700 pixel grey-scale image via Single Value Decomposition (SVD).

(a) For what values of k would Aj corresponds to a lossy compressed image? No additional explanation is
necessary.

K L v

(b) Let A = oxy’ where x,y € "R and ¢ € R is nonzero. Prove that rank(A) = 1. Hint: Try constructing a
3 x 3 example, A, by choosing some nonzero o € R and x,y € 3R. This should give you the insight you
need to answer this question for general x,y € "R below.
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36 9 12
(c) Let A= |—48 —12 —16/|. Determine the singular value decomposition A = oxy?’.
144 36 48

3

3
16 94 w W oq o 3 ['\‘{] [3w) l 1
- _ _ 4§ -1z -\ _ - _ v -in L 2w
Since Lﬂn 36 _51\:3.& = (V) [\w » %] = [ :‘;_] [z 41 =y Trcorm Joommm = Wb Lwie ["' s %)

M a .
TWis watrix 15 wow A few A= Oxyl  with & =169, X=[':,’:;l \\51=[T§‘Ts%
Using 4 gven  equadion (S), the singulor volue decamposifon of A= (160) (FXNH)+ W THED + (1) () =1
Therefoe, Ah s Wor  Value dewwmpasition of A is 2.

(d) Assume {v1, Vs, vs3} isan orthogonal set of nonzero vectors. Prove that the set is linearly independent.

Seee Vi, Va)Vy s an ovﬁhoqom\ sd and  av Won-2am vedos, \i-Va =0 |, V2:V3=0,V."\N3=0.
Ld o y X Xy R be scalar  Vales b Yhad 0V 4 xa\2 t+ &V =0.

SO + X2\ t XaN3 = O

(o aVa 4 ocais) - Vi= O - Whit =102, 03 (weaming Vigva, ov Vs)
W Vi 4 ocaVa-vi+ ®aN3-\li =0
O (V- Vi) 4 BV ) X3 (Vs -\i) =0

S‘\V\(& \'F \,J *V( whir :)=\,1,o" 3K\“;V1,ov \/3) ) Yhon \IS‘\H:«O s Vs agn QA-\\D(%%(.\
W of  vethors, This feawes iF NGEViL Ve g

i (\i-ViY=0
oG (ViVi®) =0

Simer i %0 ) Yaor ViViT 40. Tws Vﬂ'\'&(‘vs e er(lw‘\'iQM o =0-
Thay, &= = X3 =0, Wieaning Pheoseh wmasr ke \'\V\cavltﬁ ‘\m\epmdcvﬁ~ s

(e) Consider the set {v1,Vva,Vv3} from part (d). What property of a 4th vector v, € 4R would ensure that the
extended set {vy, Vo, V3, v4} spans ‘R? Give a short explanation. Note: your explanation does not have to
include how you would find such a vy.

The propety that Wy ovHhoq onel and \meuv\g \v\dxpcv\dw«‘r o ViyVz, N3 woadd  emsuvt  Yhak [\h,\lz,\h,\l& Spaqu\,

From pavt d, {v\)vl,vﬂ, is an  \incaly indepundent and ovdheqonal sty similer Yo A x-y-z plans wkidh ok ovthogond do
eadn othw. This makes i3 so Yt oy point - Wedhe o "> can Lo Pound Dt o Has, 2 \incorty ind ependnt

and othoqenal Vetiors A% Weeded ks ospan 3T

Taking s lwgre, B span YR yon  weuld  need  anothur vechr dhat iy orbhogued  and linody independent
how  the otk vedow tn P sdh Thaebry,  Be teosd AVuVou Wl b 2pay RN y Vi wald hew b

be Vinwarly indepndenl  Bom W, VVa o and  orthageal b VG VG Ve



Singular Value o;

104

10°

10°
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(f) Download the Jupyter notebook (see Quercus page of Assignment 2), which includes the python code of
an SVD analysis. Please also download the three example grey-scale images imagel.png, image2.png, and
image3.png from the same Quercus page. You can run the code on the Uof T Jupyter server, on your own
local Jupyter installation, or on the ECF lab PCs. We recommend using the U of T Jupyter server, since all
necessary packages are already installed: https://jupyter.utoronto.ca/hub/user-redirect/tree. For that, please
login with your UofT credentials and click upload’ to upload the IPYNB file and images. After that, you
can open the uploaded notebook and run the Python code.

Use the Jupyter Python code to analyze the provided three images. Plot the sorted singular values o; over
the index 7 in one graph and discuss the results for all three provided images. Do you see a pattern of the
result depending on each input image?

Insert your plot below. In addition, briefly discuss which of the 3 images would allow for the highest and
which for the lowest compression ratio by singular value decomposition. Hint: The compression ratio is
the uncompressed file size over the compressed file size. You don’t need to calculate this ratio. However,
think about which image would need the largest £ and which the lowest k in Equation (7) for an accurate
representation of the uncompressed image, Equation (6). For plotting o;, see the comments and plotting
commands in the Jupyter file. Also, keep the logarithmic Y-axis for your graph.

Sinw Ahe Y- oxis shows  the vaue ot euth value oF @i ar  Ihe jndex i indiceded

—— imagel

= :::ZZ in e X-oxis. Sina K s i Ak denominator, o smallr K value  veuls in o lorgur  comphession vatio.

Sinw e valw of eah @i for image | deotags Wt dvoskically ot gmalee indices,
Paus image | would need the lowest K R an acurak  wpresadution of
e Uncompresied  image.

Thus) image | would  allow  Bon g Whighuk - Gowpression  vatio

Sink Me volw of eadw ¢ b image 3 only detatd ¥ Y end

indexi (value shays Vt\ﬁ‘\'\vt.\\j M osame Hhvougnowt  the  indices  seen ‘\hvwa\\ Ahe P\«kw)
Thet for, wmage 3 woud need e Wigha¥ K R an atwalt vepresentation
of  th  Wiompresied imaqe

Thws mage 3 wouwld  ollow  Pon  the  swallesk comprtssion  vutio

(g) Calculate the SVD of imagel.png with the given Jupyter code. For what choice of k € Z would you expect
a reduction in file size? To answer this question, estimate the memory needed to store the SVD-compressed
image and compare it to the memory needed for the uncompressed 8 bpp version of the image. Hint: Estimate
the memory size of the uncompressed image by using its size and given colour depth. Also note that each
floating-point number uses 32 Bit memory when stored.

Sint  the imagt i SV X S\ pixely, and W u,nmw‘gwssuz) Vursion 8 Bopp.
Theehe, e wmemowy B AW wnuovprenied  mage o (SIEDERY= 2047182 Wit

To caladalt e doice of K fv o veduckin o Fle size, P following  equatin
waes solved, whot (D[S k4 K4 SIIK)  wpraseal th Memow oF A SVD - comprestdd mage Stong K omponents
(DG G = B (SR kKt 1K)
A0 ) _
N = \02S¥
X = 6394 =3 (vownded down sinat only K€63.94% Wil vesuWl n o smalle wewawy)

T\mu,\ weuld e‘v\hﬁ exped o wdudlon  in o Rl ©ze b K €63



