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Preamble:
Image processing is the manipulation of digital images by applying mathematical tools and algorithms. A wide range
of applications based on digital image processing are, for example, medical imaging, image optimization in consumer
cameras, computer vision, and satellite imagery. Linear algebra, and the techniques you will learn during this course,
plays a crucial role in that �eld by providing a mathematical foundation.

A typical digital image can be considered as a 2-dimensional matrix of pixels (abbreviation for picture element). Meth-
ods of digital image processing are manipulating this 2D-matrix. A pixel is the smallest element of a digitally acquired
raster image, and can be considered as a colour sample at each point of an image. Typically, each pixel is represented
by 3 positive integer values from 0 to 255 for each colour red, green, and blue: 0 is representing black and 255
(= 28 � 1) either red, green, or blue. In that case, 24 Bits are used to code 16,777,216 distinct colours for each pixel.
�is is called a 24 bpp (24 Bits-per-pixel) colour depth. If a grey-scale image is sampled, each pixel samples the light
intensity. In that case, only 8 Bits (single integers from 0 to 255) are typically necessary, as shown in Figure 1, to store
grey-scale images.

157 153 174 168 150 152 129 151 172 161 156 156
156 182 163  74  75  62  33  17 110 210 180 154
180 180  50  14  34   6  10  33  48 106 159 181
206 109   5 124 131 111 120 204 166  15  56 180
194  68 137 251 237 239 239 228 227  87  71 201
172 106 257 233 233 214 220 239 228  98  74 206
188  88 179 209 185 215 211 158 139  75  20 169
189  97 165  84  10 168 134  11  31  62  22 148
199 168 191 193 158 227 178 143 182 106  36 190
206 174 156 252 236 231 149 178 228  43  96 234
150 216 116 149 236 187  86 150  79  38 218 241
150 224 147 108 227 210 127 102 36 101 256 224
190 214 173  66 103 143  56  50   2 109 249 215
187 196 236  75   1  81  47   0   6 217 256 211
183 202 237 145   0   0  12 108 250 138 243 236
196 206 123 207 177 121 123 200 175  13  96 218

157 153 174 168 150 152 129 151 172 161 156 156
156 182 163  74  75  62  33  17 110 210 180 154
180 180  50  14  34   6  10  33  48 106 159 181
206 109   5 124 131 111 120 204 166  15  56 180
194  68 137 251 237 239 239 228 227  87  71 201
172 106 257 233 233 214 220 239 228  98  74 206
188  88 179 209 185 215 211 158 139  75  20 169
189  97 165  84  10 168 134  11  31  62  22 148
199 168 191 193 158 227 178 143 182 106  36 190
206 174 156 252 236 231 149 178 228  43  96 234
150 216 116 149 236 187  86 150  79  38 218 241
150 224 147 108 227 210 127 102  36 101 256 224
190 214 173  66 103 143  56  50   2 109 249 215
187 196 236  75   1  81  47   0   6 217 256 211
183 202 237 145   0   0  12 108 250 138 243 236
196 206 123 207 177 121 123 200 175  13  96 218

Figure 1: Grey-scale image represented by 8 bpp (Bits-per-pixel). [source: stanford.edu]

One application of linear algebra in the context of digital image processing is for a linear transformation of the im-
ages / 2D-matrices. We will discuss linear transformations in more detail later this term. Common transformations
include scaling, rotation, and translation of the image. All of these linear transformations can be represented by a
matrix multiplication.

Another important application of linear algebra in the context of digital image processing is �ltering, which will
be explored in �estion 1 of this assignment. Filtering includes, for example, methods for noise reduction, blur-
ring/sharpening, edge detection, white balancing, colour correction, and many more.

Lastly, images have to be stored in e�cient ways. For a colour image of size n ⇥ m with a 24 bpp colour depth,
m ⇥ n ⇥ 24Bits of memory are necessary. An image of 8000 ⇥ 6000 Pixels (4:3 aspect ratio and 48MP resolution
of modern smartphone cameras) with 24 Bit colour depth will lead to an uncompressed image �lesize of 144MB. To
reduce the image �lesize, lossy (permanently removing unnecessary information of the original image) and lossless
compression methods are applied. For lossy compression algorithms, it is vital to identify unnecessary information
of the image, which are not perceived by the viewer and can be removed. One approach for a lossy compression is
based on the Singular Value Decomposition (SVD), which will be explored in more detail in �estion 2.
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�estion 1:
For simplicity, we assume that each pixel of a grey-scale image is considered as a real value in �estion 1(a) to
(e). Let G 2 nRm be a grey-scale image of n⇥m pixels. A collection of image �lters F1, F2, . . . , Fk 2 nRm can
be used to process this image, resulting in �ltered images Al represented as:

Al = Fl �G, l = 1, 2, . . . , k, (1)

where � denotes the entry-wise product. �e entry-wise product (also called Hadamard product) of two matrices
of the same size is de�ned as the product, where each entry of the resulting matrix is the product of the corre-

sponding entries of the original matrices. For example, if P =


p11 p12
p21 p22

�
and Q =


q11 q12
q21 q22

�
are 2 ⇥ 2

matrices, the Hadamard product is de�ned as

P �Q =


p11q11 p12q12
p21q21 p22q22

�
. (2)

(a) Can the �lter F1 in Equation (1) be used to blur or smooth an image A1? Unsupported answers will not
receive full credit.

(b) Name at least three applications in the context of digital image processing for a �lter as de�ned in Equa-
tion (1). Additionally, give details how Fi would look like for your applications.

Fi My blur/smooth an image Al , depending on its values · Traditionally , bluring is done through
"averaging filters" , which assignweights to adjacent pixels and average them to reduce variations.

If FI is drived from Gitself
, where the entries in f

,

are selectedso that adjacent values in G average out

to similar values
,

then it can create a blurring effect on the image(A
.) . However

, iff, is unrelated to G,
this blurringcannot be achieved for all GoThis is because F

, OG undergoes entry-wise multiplication, meaning even entry is altered independently,as opposed to an averaging filter, which considersneighboring elements during computation.

1) Embossing an Image : embossing is a computer graphics method that replaces each pixel of
an image by either a highlight or shadow, depending on the lightness ordarkness of the original image.A filter fe such as Fe =[] can give an image a raised , 3D appearance in the diagonal direction, bydecreasing values at the top , and increasing those closer to the bottom .

S

2) Inceasing brightness : To increase brightness in an image ,
if the entries in he have values greater than

1,
such as Fe = [12 !2] , all entres within Gworld be scaled up by the same amount. This would bring values
closer to 299 (whitel and because this is applied for all entries, this will create an onl effect of a brighter image.

3) Reducing Noise : "blurring filtrs" can reduce noise in images ,
and create a clearer output.

An example of a filterff that could be applied is fre , which gives weight to a centre pixelwhile lessening that of its neighbors, to reduce noise around a pixel .
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(c) Assume that the entries of the image G are all nonzero. Prove that the set of �ltered images {F1 � G,F2 �
G, . . . , Fk�G} is linearly independent if and only if the set of �lters {F1, F2, . . . , Fk} is linearly independent.

(=) First
,

to prove the ifand only if, we'll preve that if Ef
, F2

,
... Fas is linewly independent (by assumptions

,then Ef
, OG , F206, ... 512063 is linewly independent. This means for <(2...KER af + 22f2 +.. - CE =O only for C=C2 =.. Eck = 0.To be linewly independents(foG)+ 12 (foG) +....+ ((FROG)= 0 for 11 ,2, ... (KER and 1 = 12=... < = 0.If Fi = [Piim]G =[] , this can be writtensi

writing out the
additionnmo

If the enture of G, being gu/gnd1212 are all constants ER, and non-zero (by definition)
,

and < , 12, ... ERR,
then this turns into :dium) =o for some hi, wherei = c.gm. D

However
, equation ID is just 1 equations of linear combinators of each of the entres in F,E2, ... FR. From our assumption, Firtz, ... Fe arelinewly independents meaning all xi = 0. However

, because Li Cigmu , and Amn is non-ze, then all Ci = O in GCFOGC2(F2G+

... (fnoG) = 0. Because the only solution for this is that all cito , by definition ofthem independence, 9 G
, 22 Fro

is linewly independently

(E) None, he prove that if 57
, 06

, Fol , ... FROGY is linewly independent (by assumptiony
the so is Eff.... F3 .This means Gr B2,

... BRERs B(foG)+ B2(fG) +....+ B (From)= 0 forB....BER and B =B2= - --D = 0.
To be linewly independents for <(2... CKERS GFI + CF2 + ... CRER =O only for C=CZ =.. F(k = 0.

If Fi =[P]G= ] ,
this can be written as :

[i]]+ ] = 0

Rewriting the equations for each entry in Fi gies : 2ci(inm) = 0 .Because Ci is any arbitrary constants let Ci = & : Em ,
whee LisamERs Em #0 by definition

, entries of Gare non-zer.This yields :

E9iEnm(Pum) = 0.
This expression shows the linear combination of each entry in Pam multiplied by constants &i and Inm .

This is like writing
&FG + OufzoG +... + BrFioG for some B,B....BRER . However

, by assruption we know that di from Ci = :qm,
has all di = 0 , because of the lineaindependenceof EfoG

, God,...,foG3
. If all di =o

,
then all ci = o

, because ci =Ligum.
This means that only for all Ci = o, Ci (Pm) = O is satisfied,

which
, by definition of linear independence,

means that EF1
, En

, ... find is linear independent.

Therefore
, because bothif directions" have proven to hold , the set of images Efod, F2o6, ... FROGE is lively independent

it and only if EF
, En

,
... Fr3 is linewly independent.

/

: QER
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(d) Assume that the entries of the imageG are all nonzero. LetW be the set of the �ltered images {F1 �G,F2 �
G, . . . , Fk �G}. Suppose a new image �lter Fk+1 is introduced. Prove that the �ltered image Fk+1 �G lies
in spanW if and only if Fk+1 is a linear combination of {F1, F2, . . . , Fk}.

To prove this if and only if statements we have to prove two directions :

() first : If FROG Espany whe W = Ef, G , F20G, ...., FroGB, then F is a linear combination of EF1 , En ,
....is 3.To start

, if Fineloh-spark, by the definition of aspans FIG = F
, OG + (2E20G +.... - FoG ,

where /C2---CER . Consideringthat the entries of G are all constants Ey for Fi =C] and this can be rewritten as :

The equate dthem
m +0, by definition of yum

However
, because Enin to on each side of the equations

, this can be witth
as Kim E for some CiERhi= cigum

I is simply the equation saying that the entries of Fatt are linew combinations of those in EFvEs .... fla3g as diate all constant

coefficients· Therefore
, given FinloGEspan w

, Fuel can be written as a livew combination of EFyfs ...-3
.//() Second : If Fix can be with as a linew combination of EF1 / F2

,
... Fig 3 , Fatig Espann .Finel as a liner combination of Efisf2

, ... 513 meas flatt = cifitiefut
... Pafk,

for 1112, ... CER.

If Fi =[i]
this can be written as :

[]=]....The equations for each of the entries in fatt look like : "Em= im.

J
Now

, the expression for ItloG written to be included in Span We with G=Cgm] , IERmFocan be miltenas

[-)+...Em]t itThe equations for each of the entries in fits look like : =mum)s whe
AmERm0. Because the entre of em is

are all non-zero
,

for each equation of "Em= Imium)s it can be re-written as Min = (m) > When divided by Ino.
Therefore,

me arrive at the equation : 1Inm
=E()(m) ifor some arbitrary LiER . But

, this equation, My
, is equal to the one is I ! Li and Ci are both arbitrary Scalan values andby our assumptions By is allady the for fiel

.
This means A must before as well

,
and we know that I is obtained bya rearrangement for the equation of FPGEspan W

. Thus
, if fit can be written as a live combraton of Eff ...f CB

then
FGEspanw c).

Therefore because both direction of the if and only if statement Golde Fint spank if and only if Y is a linear combination of[51 , 72, ...513.

: QED
. Y
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(e) Assume F1 =


1 0
0 1

�
, F2 =


0 1
1 0

�
, and F3 =


1 1
0 0

�
are �lters for a grey-scale image G 2 2R2.

Verify whether the �lters F1, F2, F3 are linearly independent, and determine whether F4 =


2 1
1 4

�
lies

in the span of {F1, F2, F3}.

(f) For saving grey-scale imagesA of size n⇥m pixels in an e�cient way, each pixel is stored as an 8 Bit integer,
where 0 represents black and 255 represents white (see preamble). Let V be the set of these grey-scale images.
Is V a vector space if one uses entry-wise vector addition and scalar multiplication?

To be linearly independent, difi + 12f2 + &zf3 = 0 only for 21162/43ER and 41 =12=23 = 0·Let's assume this set is linerly dependent, and the equation is satisfied by one non-zo Lv2, or 23.

Rewriting this
gives : [] +[][] = 0

. For each entry, me obtane
equations : 21 +az = 0E 62 + 13 = 0 .

This means <1 = -23 , x1 = -12
,

and C2 = -13. However
, ussuming One of L1 162

41 + x2 = 0

orby is non-to, then di = -(a)= 13141 = -Enl= 33 . Home
,
this implies <1 = d = - 23. The onlyScalar CEIR that satisfies C = -c is 0. But

, if 43 = 0
, then d = 0 and Le = 0. We arive ata contradiction,meaning F

, F2
, Es are linearly independents because only hi =12 = 13 = 0 satisfies the equation.

To determine if Fe lies in the Span of Fi,fz
, Es

,
we have de find Escalars , C , G

,GER, suchthat Fu = c , Fi + c2fz + cyf3. This menus :

[ii] = x(di] + x[ib] + 1 [00] .

writing an equation for each entry , we get 4 equations :E If= 1 < = 4 , then c = Ogz = -2y = C
This implies (3 = 0 and (3 = -2, implying OF-2g which is not fre

· Therefore
, because for cannot be obtainedby linear factors of Fisfz, fa

,
it doest lie in the span of Etisfu

,
fis ./

: QEP
.

No. If the entries of A are all supposed to be more than 0 (no

negative entries , thenU does not satisfy MI : that for
every LER,EU, LEV.If 10

, then matrix A would have negative entries , which by definition,
don't

correspond to anyvalue on the greyscale. Therefore
, because notl raxious hold

,
Vis not a wester space.

·: QEB
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�estion 2:
LetA 2 mRn be a grey-scale image of sizem⇥n, where each entry is representing a grey pixel. As you learnt in
ESC103, the rank of an n⇥mmatrix is the number of linear independent rows, which is the same as the number
of the linear independent columns.

�e Singular Value Decomposition1 of a matrix A is a way of writing A as the product of three matrices:

A = U⌃V T (3)

with the matrices U , ⌃, and V T de�ned as

A =
⇥
u1 u2 · · · un�1 ur

⇤

2

666664

�1 · · · 0
�2

...
. . .

...
�r�1

0 · · · �r

3

777775

2

666664

vT
1

v2
T

...
vr�1

T

vr
T

3

777775
(4)

where ui are the columns of U and vT
i are the rows of V T . �e matrix ⌃ is a diagonal matrix with the entries

�i on the diagonal (the diagonal entries of ⌃ are nonnegative and all other entries of ⌃ are zero). Because ⌃ is
diagonal, Equation (4) can be wri�en as:

A = u1�1v1
T + u2�2v2

T + · · ·+ ur�1�r�1vr�1
T + ur�rvr

T . (5)

As you can see, A is separated into the sum of (rank=1) matrices of the form �iuivi
T . With that, the sum in

Equation (5) can be expressed as

A =
rX

i=1

�iuiv
T
i (6)

with r so called singular values {�i 2 R | �i > 0} and both {u1, . . .ur} ✓ mR and {v1, . . .vr} ✓ nR are
orthonormal sets of vectors.

What’s an “orthonormal set of vectors”? In simple language, each vector has length one and any two vectors are
perpendicular (also called “orthogonal”). More speci�cally, two vectors, x,y 2 nR, are called orthogonal if and
only if their dot-product is equal to zero: x · y = xTy = 0. �e set {x1,x2, . . .xk} ✓ nR is an orthogonal set
of vectors if and only if every pair of vectors is orthogonal: xi · xj = 0 if i 6= j. �e set {x1,x2, . . .xk} ✓ nR
is an orthonormal set of vectors if and only if every pair of vectors is orthogonal and each vector has length 1:
xi · xj = 0 if i 6= j and xi · xi = 1 for every 1  i, j  k.

At the end of this course, you will have the tools you need to be able to �nd the SVD of a general matrix.2 We
can use Equation (5) to compress the image A by keeping the “most relevant” terms in the sum: As you can see
from Equation (5), some matrices �iuivT

i could be neglected if �i is very small. �erefore, a typical strategy for
compressing images is pu�ing the singular values �i in nonincreasing order, �1 � �2 � . . .�r > 0 (as well as
sorting the corresponding ui and vi in U and V , respectively) and only storing k < r of these components in an
image �le (k is an integer of at least 1). �e compressed image Ak is constructed as

Ak =
kX

i=1

�iuiv
T
i (7)

�is will reduce the image size dramatically, however, the image quality will be degraded if k was picked too
small, see for example Figure 2 where 30 components were used (k = 30) for the compression of the initial
grey-scale image.

1In this writing assignment, we are introducing you to the compact (or reduced) SVD, which is slightly di�erent from the full SVD. To save
space, we refer to it as the “SVD” throughout.

2For the curious: ui are eigenvectors of the matrix AAT and vi are eigenvectors of the matrix ATA.
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Figure 2: Lossy compression of a 700⇥ 700 pixel grey-scale image via Single Value Decomposition (SVD).

(a) For what values of k would Ak corresponds to a lossy compressed image? No additional explanation is
necessary.

(b) Let A = �xyT where x,y 2 nR and � 2 R is nonzero. Prove that rank(A) = 1. Hint: Try constructing a
3 ⇥ 3 example, A, by choosing some nonzero � 2 R and x,y 2 3R. �is should give you the insight you
need to answer this question for general x,y 2 nR below.

k(r

Since JER is non-zero , and a scalar value
,
A = Oxyt can be written as :

A = r[y : ye ... yni] =~

As seen ,
the result is an men matrix , where each column is a linear combination ofi

The first column can be obtained by multiplying by 1
,
the second can be obtained by taking where yut , ye"3R,

the third byt where yet , y, 3M ,
and so on , until yut.

Since the nxn matrix is composed of linear combinations of]
,
the rank of this matrix is 1.

Since & ER is nonzero , and multiplying the uxn matrix by a non-zero Scalar value doesn't change its rank
,
the

rank of A = 5xyT is 1 . Thus , rank (A) = 1.
M



Page 9 of 10 MAT185 – Assignment 2

(c) Let A =

2

4
36 9 12
�48 �12 �16
144 36 48

3

5. Determine the singular value decomposition A = �xyT .

(d) Assume {v1,v2,v3} is an orthogonal set of nonzero vectors. Prove that the set is linearly independent.

(e) Consider the set {v1,v2,v3} from part (d). What property of a 4th vector v4 2 4R would ensure that the
extended set {v1,v2,v3,v4} spans 4R? Give a short explanation. Note: your explanation does not have to
include how you would �nd such a v4.

[2][1234]
Since [i] = (1) [] = cI[12342 = (1) Jones Jus+4

= (169)is

This matrix is now in the form A= OxyT with 2 = 169 , X = [i] , y =[]

Using the given equation (5)
,
the singular value decomposition of A = (169) (ii)+ 1169)() + (169) (ii) = 72

Therefore
, the sin ular value decomposition of A is 72.

Since VI , Vz ,Va is an orthogonal set and are non-zero rectors
, V.-V2

= 0
,
Y2 - Ve = 0 , X: Ve

=0.

Let &
.,
92

,
&3 ER be scalar values such that & , XI + &aVz +&3Vz =0.

&, Vi + &z(z + XyVz = 0

(xV+&Ve + &313) . Vi = 0 . Vi where i = 1 ,2 , 003 (meaning Vi
, Un , or Vs)

& Vi . Vi + &2/2 . Vi + XyVy-Vi =0

&, (V1 · Vi) + &z(X) - (i) + X3(Vy ·Vi) = 0

Since if UjV : where j = 1
, 2 ,

or 3 (Vi ,K , or X3) , then Vj . Vi =0 since its an orthogonal
set of vectors. This leaves if Vj = Vi . If Vj =Vis then :

Xi (Vi - Vil = 0

Xi (ViViT) =0

Since VitO
, than ViViT to . Thus to satisfy the equation , Xi =0.

Thus, X. =Xz = &3 =0 , meaning the set must be linearly independent.

The property that Va is orthogonal and Linearly independent to XI
,
V2

,
X3 would ensure that EV , X2 , Va , K+ 3 spans "R.

From part d
,
Ev,V ,X33 is an linearly independent and orthogonal set

, similar to the X-y-2 planes which are orthogonal to

each other . This makes it so that any point or rector on I" can be found
.
Due to this , 3 linearly independent

and orthogonal rectors are needed to span 31R.

Taking this logic , to span 4R , you would need another restor that is orthogonal and linearly independent

from the othervectors in the set. Therefore , for the set &VikavaX43 to span "R ,
Ye would have to

be linearly independent from V
,
12

,
Us and orthogonal to V

,
Vi
,
Ve.
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(f) Download the Jupyter notebook (see �ercus page of Assignment 2), which includes the python code of
an SVD analysis. Please also download the three example grey-scale images image1.png, image2.png, and
image3.png from the same �ercus page. You can run the code on the U of T Jupyter server, on your own
local Jupyter installation, or on the ECF lab PCs. We recommend using the U of T Jupyter server, since all
necessary packages are already installed: h�ps://jupyter.utoronto.ca/hub/user-redirect/tree. For that, please
login with your U of T credentials and click ’upload’ to upload the IPYNB �le and images. A�er that, you
can open the uploaded notebook and run the Python code.

Use the Jupyter Python code to analyze the provided three images. Plot the sorted singular values �i over
the index i in one graph and discuss the results for all three provided images. Do you see a pa�ern of the
result depending on each input image?

Insert your plot below. In addition, brie�y discuss which of the 3 images would allow for the highest and
which for the lowest compression ratio by singular value decomposition. Hint: �e compression ratio is
the uncompressed �le size over the compressed �le size. You don’t need to calculate this ratio. However,
think about which image would need the largest k and which the lowest k in Equation (7) for an accurate
representation of the uncompressed image, Equation (6). For plo�ing �i, see the comments and plo�ing
commands in the Jupyter �le. Also, keep the logarithmic Y-axis for your graph.

(g) Calculate the SVD of image1.png with the given Jupyter code. For what choice of k 2 Z would you expect
a reduction in �le size? To answer this question, estimate the memory needed to store the SVD-compressed
image and compare it to thememory needed for the uncompressed 8 bpp version of the image. Hint: Estimate
the memory size of the uncompressed image by using its size and given colour depth. Also note that each
�oating-point number uses 32 Bit memory when stored.

Since the y-axis shows the value of each value of O at the index ; indicated

in the X-axis . Since K is in the denominator , a smaller K value results in a larger compression ratio.

Since the value of each G; for image / decreases most drastically at smaller indices,

thus image I would need the lowest K for an accurate representation of

the uncompressed image.

Thus
, image I would allow for the highest compression ratio

Since the value of each 2 for image 3 only decreases at the end

Ivalue stays relatively the same throughout the indices seen through the plateau
Therefore

, image 3 would need the highest K for an accurate representation

of the uncompressed image

Thus image I would allow for the smallest compression ratio

Since the image is 512X512 pixels , and the uncompressed version is 8bpp.

Therefore
, the memory for the uncompressed image is (512) (512)(8) = 2097152 bits

To calculate the choice of K for a reduction in file size , the following equation

was solved
, where (32)1512k + K + 512k) represents the memory of the SVD-compressed image storing K components,

(8) (512) (512) = (32)(512k+ 1 + 512k)
18) (512) (512)

32
= 1025K

= 63 .94 = 63 (rounded down since only K*63 . 94 will result in a smaller memory

Thus
,
I would only expect a reduction in file size if K263.


